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Abstract

During the last phase of the project, emphasis has changed to flexible space robotics,

by mutual agreement between Dr. R. C. Montgomery, NASA Technical Officer, and the

Principal Investigator.

Significant advances have been achieved over the period covered by this report. Research

has been concerned with two main subjects: 1) the maneuvering and control of freely floating

flexible space robots and 2) the development of a theory for the motion of flexible multibody

systems. Work on the first subject has resulted in two papers, both of them concerned with

planar maneuvers. The first is concerned with the maneuvering and delivery of a payload

to a certain point and in a certain orientation in space. The second is concerned with

the docking maneuver with a target whose motion is not known a priori. Both papers will

appear in the Journal of Guidance, Control, and Dynamics. The second subject is concerned

with the development of hybrid (ordinary and partial) differential equations for the three-

dimensional motion of flexible multibody systems, a subject of vital interest in flexible space

robotics. The paper will appear in the Journal of Guidance, Control and Dynamics in an

issue dedicated to the memory of Lawrence W. Taylor, Jr.

Abstracts and copies of the papers are hereby included.



1. Meirovitch, L. and Lim, S., "Maneuvering and Control of Flexible Space Robots," NASA

Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems,

Williamsburg, VA, June 8-10, 1992. Also Journal of Guidance, Control, and Dynamics

(in press).

This paper is concerned with a flexible space robot capable of maneuvering payloads.

The robot is assumed to consist of two hinge-connected flexible arms and a rigid end-

effector holding a payload; the robot is mounted on a rigid platform floating in space.

The equations of motion are nonlinear and of high order. Based on the assumption that

the maneuvering motions are one order of magnitude larger than the elastic vibrations, a

perturbation approach permits design of controls for the two types of motion separately. The

rigid-body maneuvering is carried out open loop, but the elastic motions are controlled closed

loop, by means of discrete-time linear quadratic regulator theory with prescribed degree of

stability. A numerical example demonstrates the approach. In the example, the controls

derived by the perturbation approach are applied to the original nonlinear system and errors

are found to be relatively small.

2. Chen, Y. and Meirovitch, L., "Control of a Flexible Space Robot Executing a Docking

Maneuver," AAS/AIAA Astrodynamics Conference, Victoria, B.C., Canada, August 16-

19, 1993. Also Journal of Guidance, Control, and Dynamics (to appear).

This paper is concerned with a flexible space robot executing a docking maneuver with a

target whose motion is not known a priori. The dynamical equations of the space robot are

first derived by means of Lagrange's equations and then separated into two sets of equations

suitable for rigid-body maneuver and vibration suppression control. For the rigid-body

maneuver, on-line feedback tracking control is carried out by means of an algorithm based

on Liapunov-like methodology and using on-line measurements of the target motion. For the

vibration suppression, LQR feedback control in conjunction with disturbance compensation

is carried out by means of piezoelectric sensor/actuator pairs dispersed along the flexible

arms. Problems related to the digital implementation of the control algorithms, such as
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the bursting phenomenonand systeminstability, arediscussedand a modified discrete-time

control schemeis developed.A numerical exampledemonstratesthe control algorithms.

3. Meirovitch, L. and Stemple,T. "Hybrid Equations of Motion for Flexible Multibody

Systems Using Quasi-Coordinates," AIAA Guidance, Navigation, and Control

Conference, Monterey, CA, August 9-11, 1993. Also Journal of Guidance, Control, and

dynamics- Issue dedicated to L. W. Taylor, Jr. (to appear).

A variety of engineering systems, such as automobiles, aircraft, rotorcraft, robots,

spacecraft, etc., can be modeled as flexible multibody systems. The individual flexible bodies

are in general characterized by distributed parameters. In most earlier investigations they

were approximated by some spatial discretization procedure, such as the classical Rayleigh-

Ritz method or the finite element method. This paper presents a mathematical formulation

for distributed-parameter multibody systems consisting of a set of hybrid (ordinary and

partial) differential equations of motion in terms of quasi-coordinates. Moreover, the

equations for the elastic motions include rotatory inertia and shear deformation effects.

The hybrid set is cast in state form, thus making it suitable for control design.
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MANEUVER/iNG AND CONTROL OF FLEXIBLE SPACE ROBOTS t

Leonard Meirovitch* and Seungchul Lim**

Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University

Blazlcsburg, VA 24061

ABSTRACT

This paper is concerned with a flexible space robot capable of maneuvering payloads.

The robot is assumed to consist of two hinge-connected flexible arms and a rigid end-effector

holding a payload; the robot is mounted on a rigid platform floating in space. The equations

of motion are nonlinear and of high order. Based on the assumption that the maneuvering

motions are one order of magnitude larger than the elastic vibrations, a perturbation ap-

proach permits design of controls for the two types of motion separately. The rigid-body

maneuvering is carried out open loop, but the elastic motions are controlled dosed loop, by

means of discrete-time linear quadratic regulator theory with prescribed degree of stability.

A numerical example demonstrates the approach. In the example, the controls derived by

the perturbation approach are applied to the original nonlinear system and errors are found

to be relatively small.

1. INTRODUCTION

A variety of spare missions can be carried out effectively by space robots. These mis-

sions include the collection of space debris, recovery of spacecraft stranded in a useless orbit,

repair of malfunctioning spacecraft, construction of a space station in orbit and servicing the

space station while in operation. To maximize the usefulness of the space robot, the manip-

ulator arms should be reasonably long. On the other hand, because of weight limitations,

they must be relatively light. To satisfy both requirements, the manipulator arms must be

t Kesearch supported by the NASA Ke_earch Grant NAG-I-225 monitored by Dr. 1%. C.

Montgomery. The support is greatly appreciated.

* University Distinguished Professor

** Graduate Research Assistant



highly flexible. Hence,space robots share some of the dynamics and control technology with

articulatedspace structures.

Robotics has been an active research area for the past few decades, but applications

have been concerned primarily with industrialrobots, which are ground based and tend to

be very stiffand bulky. In contrast,space robots axe based on a floatingplatform and tend

to be highly flexible.Hence, whereas industrialand spare robots have a number of things

in common, the differencesaxe significant.More recent investigationshave been concerned

with flexibleindustrialrobots.I-4 On the other hand, some investigationsare concerned

with space robots consistingof rigidlinks.5-_ Research on flexiblespace robots has come

to lightonly recently,s'9

This paper is concerned with a flexiblespace robot capable of maneuvering payloads.

The robot isassumed to consistof two hinge-connected flexiblearms and a rigidend-effector

holding a payload; the robot ismounted on a rigidplatform floatingin space (Fig. I). The

platform iscapable of translationsand rotations,the flexiblearms are capable of rotations

and elasticdeformations and the end-effector/payloa_ican undergo rotations relativeto the

connecting flexiblearm. Based on a consistentkinematical synthesis,the motions ofone body

in the chain takes into consideration the motions of the preceding body in the ch*in. This

permits the derivationof the equations of motion without the imposition of constraints.The

equations of motion are derived by the Lagrangian approach. The equations axe nonlinear

and of relativelyhigh order.

Ideally,the maneuvering of payloads should be carried out without exciting elasticvi-

bration, which is not possible in general. However, the elasticmotions tend to be small

compared to the rigid-body maneuvering motions. Under such circumstances, a perturba-

tion approach permits separationof the problem intoa zero-orderproblem (in a perturbation

theory sense) for the rigid-body maneuvering of the space robot and a first-orderproblem

for the control of the elasticmotions and the perturbations from the rigid-body motions.

The maneuvering can be carriedout open loop, but the elasticand rigid-body perturbations
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are controlled closed loop.

The robot mission consists of carrying a payload over a prescribed trajectory and plac-

ing it in a certain orientation relative to the inertial space. For planar motion, the end-

effector/payloaA configuration is defined by three variables, two translations and one rota-

tion. At the end of the mission, the vibration should be damped out, so that the robot cam

be regarded as rigid at that time. Still, the rigid robot possesses six degrees of freedom,

two translations of the platform and one rotation of each of the four bodies, including the

platform. This implies that a kinematic redundancy exists. This redundancy can be used to

optimize the robot trajectory 1° in the context of trajectory planning. A simpler approach is

to remove the redundancy by imposing certain constraints on the robot trajectory, such as

prescribing the motion of the platform. 11 Then, for a given end-effector/payload trajectory,

the rigid-body maneuvering configuration of the robot cam be obtained by means of inverse

kinematics. Finally, the forces and torques required for the robot trajectory realization are

obtained from the zero-order equations by means of inverse dynamics.

The first-order equations for the elastic motions and the perturbations in the rigid-body

maneuvering motions are linear, but of high order, time-varying and they are subjected

to persistent disturbances. The persistent disturbances arise from the zero-order solution,

and hence are known; they are treated by means of feedforwazd control. All other distur-

bances are controlled closed loop, with the feedback control being designed by means of

discrete-time linear quadratic regulator (LQR) theory with prescribed degree of stability. A

numerical example demonstrates the approach. In the example, the controls derived by the

perturbation approaz.h are applied to the original nonlinear system and the errors in the end

effector/payloaA configuration were found to be relatively small during the maneuver and to

vanish soon after the termination of the maneuver.

2. A CONSISTENT KINEMATICAL SYNTHESIS

To describe the motion of the space robot, it is convenient to adopt a consistent kine-

matical synthesis whereby the system is regarded as a chain of articulated flexible bodies and



the motion of one body is definedwith due consideration to the motion of the preceeding

body in the chain. Figure 1 showsthe mathematical model of a planar spacerobot. The

robot consistsof a rigid platform (Body 1), two hinge-connectedflexible arms (Bodies2 and

3) and a rigid end-effectorholding the payload (Body 4). The various motions are referred

to a set of inertial axesand setsof body axesto be definedshortly.

The object is to derive the systemequationsof motion, which can be doneby meansof

Lagrange's equations in terms of quasi-coordinates. 12 Because in the case at hand the motion

is planar, it is more expedient to use the standard Lagrange's equations. This requires the

kinetic energy, potential energy and virtual work. The kinetic energy, in turn, requires the

velocity of a typical point in each of the bodies.

The position of a nominal point on the platform i8 given by

R1 = + rl (1)

where Ro = [X y]r is the position vector of the origin O1 of the body axes xl,yl (Fig. 1)

relative to the inertial axes X, Y and in terms of X, Y components and rl = [Xl yl] T is the

position vector of the nominal point on the platform relative to the body axes Xl, yl and in

terms of Xl, yl components. The velocity vector of a point on the platform can be expressed

in terms of zl,yl components as follows:

Vl = CllS 0+ (2)

where

--SO 1 CO1

is a matrix of direction cosines between axes xl,Yl, and X,Y, in which s81 = sin81, c81 =

COS 81 ,

R0-Ix
is the velocity vector of O1 in terms of X, Y components and

4
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The second body is flexible, so that we must resolve the question of body axes. We

define the body axes z2, Y2 as a set of axes with the origin at the hinge 02 and embedded in

the undeformed body such that z2 is tangent to the body at 02 (Fig. 2). Then, we define

the motion of axes z2, Y2 as the rigid-body motion of Body 2 and measure the elastic motion

relative to z2, y2. Hence, the velocity of a point on Body 2 (first flexible axm) in terms of

z2, Y2 components is

V2 -C2-1Vl (02) _- _2 (r2 + u2) -_- U2rel

=C2Ro + C2-1_1rl (O2) + _52 (r2 + u2) + fi2rel (6)

where C2-1 and C2 are matrices similar to C1, Eq. (3), except that 01 is replanted by 62-61 and

t_2, respectively, &2 has the same structure as &l but with _2 replacing t)l, rl (02) = [dl hi] T,

r2 = [z2 0] T, u2 = [0 u2] T and U2rel = [0/_2], in which u2 = u2 (z2, t) and 52 = /t2 (z2, t)

axe the elastic displacement and velocity, respectively.

Using the analogy with Body 2, the velocity of a point on Body 3 (second flexible axm)

in terms of z3, y_ components can be shown to be

Va =63-2V2 (L2) + _53 (r3 + ua) + tizrel

=c3a0 + C3-1 lrx + C -2 It2(L2)+ (L2,t)]+ %el (L2,t)}

+ _3 (r3 + u3) + U3rel (7)

The fourth body consists of the end-e/lector and payload combined, a_nd is treated as

rigid. Following the established pattern, the velocity of a point on Body 4 in terms of z4, Y4

components is

V4 -C4-3V3 (L3) + _54r4

=C41i0 + C4-1&_rl (0_) + C__2 {&_[r2 (L2) + u2(L2, t)l + fi2rel (L2, t)}

+ C4-3 {_3 It3 (La)+ u3 (L3,t)l + U3rel (La,t)} + _54r4 (8)

The consistent kinematical synthesis just described permits the formulation of the equa-

tions of motion for the whole system without invoking constraint equations. Such constraint
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equationsmust be usedto eliminate redundant coordinatesin a formulation in which equa-

tions of motion are derivedseparatelyfor eachbody.

3. SPATIAL DISCRETIZATION OF THE FLEXIBLE ARMS

The velocity expressions derived in Sec. 2 involved rigid-body motions depending on

time alone and elastic motions depending on the spatial position and time. Equations of

motion based on such formulations are hybrid, in the sense that the equations for the rigid-

body motions are ordinary differential equations and the ones for the elastic motions are

partial differential equations. Designing maneuvers and controls on the basis of hybrid

differential equations is likely to cause serious difficulties, so that the only viable alternative

is to transform the hybrid system into one consisting of ordinary differential equations alone.

This amounts to discretization in space of the elastic displacements, which can be done by

means of series expansions. Assuming that the flexible arms act as beams in bending, the

elastic displacements ca_ be expanded in the series

rL(

ui (zi,t) = _ ¢i1 (xi)r/ii (t) = cT (zi) rh (t), i = 2,3 (9)
j=l

where ¢0 (xi) are admissible functions, often referred to as shape functions, and rli I (t)

are generalized coordinates (i = 2,3; j = 1,2,...,hi); ¢_ and rh are corresponding hi-

dimensional vectors.

The question arises as to the nature of the admissible functions. Clearly, the object is to

approximate the displacements with as few terms in the series as possible. This is not a new

problem in structural dynamics, and the very same subject has been investigated recently in

l_ef. 13, in which a new class of functions, referred to as quasi-comparison functions, has been

introduced. Quasi-comparison functions are defined as linear combinations of admissible

functions capable of satisfying the boundary conditions of the elastic member. As shown in

Fig. 2, the beam is tangent to axis zi at Oi (i = 2, 3). Hence, the admissible functions must

be zero and their slope must be zero at zi = 0. At zi = Li, the displacement, slope, bending

moment and shearing force are generally nonzero. Quasi-comparison functions are linear



combinationsof functions possessing these characteristics. Admissible functions from a single

family of functions do not possess the characteristics, but admissible functions from several

suitable faznilies can be combined to obtain them. In the case at hand, quasi-comparison

functions can be obtained in the form of suitable linear combinations of clamped-free and

clamped-clamped shape functions.

4. LAGKANGE'S EQUATIONS

Before we can derive Lagrange's equations, we must produce expressions for the ki-

netic energy, potential energy and virtual work. To this end, and following the spa-

tial discretization indicated by Eqs. (9), we introduce the configuration vector q(t) =

Y(O o1(0 03( )04(0o (t)

(8), can be written in the comp_.ct form

so that the velocity vectors, Eqs. (2), (6)-

Vi = Di_l, i = 1, 2, 3, 4 (10)

where

[ c81 sOt -yl 0 ... 0 T]DI= -s01 c_1 xt 0 ... 0 T

[ c02 s02 dls(02-01)-hlc(02-01)D2 = -._02 c02 dlc(02 - 01) + hls (02 -- 01) --¢Trl2 0 0 0 r 0 T]z2 0 0 cT 0 T (11)

Then, the kinetic energy is simply

1E [ VT_ V'dmi= qTMq
T= _i=1 _m _

where
4

is the mass matrix. Typical entries in the mass matrix are

roll --m, m12 =0, m13 -- --(m 2+rn3+m4)(hlc_l +dl,_01)

7
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°o,°°°°°° °°.°,°°°o,o°,*°°°°°°°°o*..°°.°°°°,° °°

mn = m, m2s = - (rn2 + m3 + m4) (his01 - dlc_s) (14)

m2s = let + m4¢T (La)] c_s

ross = fBody s Cs_bTdms ÷ m4¢3 (Ls) CTs (L3)

in which

4

i=1 _

The potential energy, assumed to be entirely due to bending, has the form

!rL2 [u" 2 1 La ,, 2 lqrKq (16)

in which EIi (i = 2, 3) axe bending stiffnesses a_d primes denote spatial derivatives. More-

over,

K = block-disg [0 K2 K3] (17)

is the stiffness matrix, where

f0 Li ,, ,,T (lS)K_ = EI_¢i ¢_ dx_, i = 2, 3

axe stiffness matrices for the flexible arms.

Next, we propose to derive the virtual work expression. To this end, we must specify first

the actuators to be used. There axe three actuators acting on the platform, two thrusters

F.1 and Fyl acting at O1 in directions aligned with the body axes aJad a torquer M1. Three

other torquers 342, Ms a_ad M4 axe located at the hinges O5, Os and 04, respectively, the first

acting on the platform and first arm, the second acting on the first and second arm a_d the

third acting on the second axm and end-effector. Moreover, there axe torquers Ms, M6, M7



a_d Ms a_ting at z2 = L2/3, z2 = 2L2/3, z3 = L3/3 and z4 = 2L3/3, respectively. In view

of this, the virtual work can be written as follows:

_W =f xl (cos 81_X + sin 81o'Y ) -_- Fyl (- sin 818X + cos 816Y) + Ml_81

+ M26(82- 8.)+ M3_¢3+ M4_¢4+ M56[82+ ¢_ (L2/3)',2]

+ + + +

+ Ms [83+ ._ (2L3/3).3] (19)

where 6X,,_',... are virtual displacements. Moreover, denoting the a_gles between the two

arms a_d between the second arm and the end-effector by

¢3 ----83 -- 82 -- 02:2 z2=L_

0_3 (20)
¢4 =84 -83 - 033 _3=L3

we can write

_¢3= _83- 682- ¢_ (L2)6"72.8¢4-683- ¢_r(L3)6"73 (21)

Inserting Eqs. (21) into Eq. (19), we c_n express the virtual work in terms of generalized

forces and generalized virtual displacements in the form

6W = qT6q (22)

where Q - [Fx Fy 01 02 03 04 NT Nr] r is the generalizedforce vector, in which

FX = F=I cos 81 - F,, sin 8,, Fy = F=I sin 81 + F,1 cos 81

el =M1-M_, 02=M2-Mz+M3+Ms+M6

03 "- M3- M4 + MT + Ms, 04--M4

' Ms¢_N2 = -M3¢_ (L2) + M5¢2 (L2/3) + (2L2/3)

N3 = -M4¢] (L3) + MTdp_ (L3/3) + Ms¢_ (2L3/3)

9
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and 6q = [6X b'Y 601 602 603 60, 6tiT2 6rtra ] z' is the genera/ized virtual displacement vector.

Equations (23) express the generalized forces and torques in terms of the actual actuator

forces and torques _nd can be written in the compact form

Q=EF

where F = [Fzl Fyl M1 M2 ... Ms] T is the actual control vector and

E=E(Ol) =

el -sl 0

81 Cl 0

0 0 I

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

-I 0 0 0 0 0 0

I -i 0 i i 0 0

0 i -I 0 0 i I

0 0 I 0 0 0 0

' L -- 0 0

(24)

(25)

where sl = sin 01, Cl = cos 01. Note that E is a time-vaxying coefficient matrix, because 01

varies with time.

Lagrange's equations can be expressed in the general symbolic vector form

Uq =

Observing that M = M (q), we can write

_-=Mcl, _ _qq =Mcl+-_/_l

(26)

aT 1 6tTOM . OV _ Kq (27)Oq- 2 -Udqq' Oq--

Inserting Eqs. (27) into Eq. (26), we obtain Lagrange's equations in the more explicit form

161TOM _M61+ M-_ "-O-qq]Cl+gq=Q (28)

10



in which

¢ITaM/Oql

6_ OM. OM
_l = _qi qi, _1T _trOM/Oq2 (29)

i-1 _q -- :

4TOM/Oq6+2_

5. A PERTURBATION APPROACH TO THE CONTROL DESIGN

Equation (29) represents a high-order system of nonlinear differential equations, and is

not very suitable for control design. Hence, an approach capable of coping with the problems

of high-dimensionality and nonlinearity is highly desirable. Such an approach must be based

on the physics of the problem. The ideal maneuver is that in which the robot acts as if

its arms were rigid. In reality, the arms are flexible, so that some elastic vibration is likely

to take place. It is reasonable to assume, however, that the elastic motions are one order

of magnitude smaller that the maneuvering motions. This permits treatment of the elastic

motions as perturbations on the maneuvering motions. In turn, the elastic perturbations give

rise to perturbations in the "rigid-body" maneuvering motions. This suggests a perturbation

approach, whereby the problem is separated into a zero-order problem for the "rigid-body"

maneuvering of the payload and a first-order problem for the control of the elastic motions

and the perturbations in the rigid-body maneuvering motions. The zero-order problem is

nonlinear, albeit of relatively low dimension. It can be solved independently and the control

can be open loop. On the other hand, the first-order problem is linear, but of relatively high

dimension. It is affected by the solution to the zero-order problem, where the effect is in the

form of time-varying coefficients and persistent disturbances. The control for the first-order

problem is to be dosed loop.

We consider a first-order perturbation solution characterized by

q=q0+ql, Q=Q0+Q1 (30)

where the subscripts 0 and 1 denote zero-order and first-order quantities, with the zero-order

quantities being one order of magnitude larger than the first-order ones. Inserting Eqs. (30)

11



into Eq. (28), separating quantities of different orders of magnitude and ignoring terms of

order two and higher, we obtain the equation for the zero-order problem

5M; ) _10= Q0 = EoF0Mo_o+ (Mo_ 1 T (31)

who .qo[ o oO,oO,oO,oO,oO: O ] qo[ xo Yoe,oe,oO.O,oO O ], -- are

zero-order displacement and generalized control vectors, E0 = E (910) is the matrix E,

Eq. (25), evaluated at 81 = 810, F0 = [Fz0 Fro Mlo M2o ... Mso] T and

OM . OM OM ] q=qoM0 = M(q0), Mu = -_-qlq0 _q2Clo ... c3q6+2rqo (32a, b)

Moreover, we obtain the equation for the first-order problem

( 1, )Mo_I + (M,_ + M' - MT) (:tl + Ma + Mu,_ - _M'v,, + K q+t-Ql+Qa (33)

r r = [Fxl Fylwhere ql = [X1 I/1 011 021 0al 041 r/Tr/a] , Q1 1911021 031 041 N TNT] T

are first-order displacement and generalized control vectors, Qd - [0 0 0 0 0 0 0 F_2 FT3] T

is a persistent disturbance vector and

OM. OM _10]
Ma = L[_-ql q° OM._q2 q° "'" 0q6+2,_ J q=qo

(34a)

6+2,, OM

M'= _ _q_qoqOi
j=l

(34b)

6+2n 6+2n 02M q=q0Mvvql-- _ _ OqjOqk qlkqOJ(:tO
3'=1 k=l

(34c)

6+2n 02M I' qxkdlo
M'vvql = ct_ __, OqOqk q=q0

k=l

(34d)

From Eqs. (24) and (25), however, we can write

Q1 = EoF1 + E1Fo = EoF1 + F_qx (35)

where

OE

E1 = _ 01=01o011

12

(36)



Moreover, the matrix F_ has the entries

F_ll = - (Fzl0 sin elo + F_10 cosS10)

F_21 = Fzl0 cos 810 - Fyl0 sin 610 (37)

F_iy = 0, i=3,4,..., y Jt-rt2 nut/,3; j =2,3,...,6+rt2+n3

In view of this, the equation for the first-order problem, can be rewritten as

+ + g' - gr) + + Moo- + K- = Eor, + Qd (3S)

6. TRAJECTORY PLANNING

The mission consists of delivering the payload to a certain point in space and placing it in

a certain orientation. For planar motion, the final payload configuration is defined by three

variables, two translations and one rotation. The trajectory planning, designed to realize this

final configuration, will be carried out as if the robot system were rigid, with the expectation

that all elastic motions and perturbations in the rigid-body maneuvering motions wilt be

annihilated by the end of the maneuver. The rigid-body motion of the robot is described by

the zero-order problem and it consists of six components, two translations of the platform and

one rotation of each of the four bodies. This implies that a kinematical redundancy exists, as

there is an infinity of ways a six-dimensional configuration can generate a three-dimensional

trajectory. This redundancy can be removed by controlling surplus variables, perhaps in an

optimal fashion. In this study, we prescribe three of the configuration variables, such as the

translations and rotation of the platform. Under these circumstances, the rigid space robot

can be treated as a nonredundant manipulator.

Next, we denote the end-effector configuration by XE, so that from kinematics we can

write

XE = f (q0) (39)

where f is a three-dimensional vector function. Differentiating Eq. (39) with respect to time,

we obtain

XE ----J (qo) cto (40)

13



where

J (qo)= [af/oml

is the 3 × 6 Jacobian matrix. Introducing the notation

(41)

T

(42)

RE = + JM6 M (44)

Then, on the assumption that 4Is is prescribed and for a given end-effector trajectory XE,

we can determine the manipulator velocity vector from

=J2 Js ) (45)

The end-effectortrajectorywaa taken in the form of _ sinusoidalfunction so as to prevent

excessivevibration. Finally,with q0 given,we can obtain the required open-loop control F0

by inverse dynamics, which amounts to using Eq. (31).

7. FEEDBACK CONTROL OF THE ELASTIC MOTIONS AND KIGID-BODY

PERTURBATIONS

The elasticmotions and the perturbations in the rigid-body maneuvering motions are

governed by the equation defining the first-order problem, Eq. (38). The persistent distur-

bances are controlled open loop and all other disturbances are controlled closed loop. To

this end, we express the control vector in the form

Fi = Flo + Fic (46)

14

(43)

Eq. (40) can be rewritten _s

where q2 = [X0 Y0 Olo]r and qM = [O20 O30 040] T axe the controlled platform configura-

tion vector and the open-loop controlled manipulator configuration vector, respectively, and

partitioning the Jacobiaa matrix accordingly, or



where the subscripts o and c indicate open loop and closed loop, respectively. Recognizing

that E0 is a rectangular matrix, the open-loop control can be written as

in which

FIo- EotQd (47)

t = (48)

x(t) = A(t)x(t) + B(t)Eouc(t) + B(t)Dd(t) (49)

is the state vector, uc =Flc is the control vector, d = Qd is the

0 , ]+M_- 1 ,_M_o + K- F_) -Mo 1 (My + M'- M T) (50a)

o (I Eo ot) (5ob, )B=[M ° ],D= -

are coefficient matrices. It should be noted here that, if the matrix E0 is not squaxe, the

matrix D is not zero, so that the open-loop control does not annihilate the persistent distur-

bances completely. As the number of actuators approaf..hes the number of degrees of freedom

of the system, the matrix E0 tends to become square. When the number of actuators co-

incides with the number of degrees of freedom the matrix E0 is square, in which case the

pseudo-inverse becomes an exact inverse and the matrix D reduces to zero.

The state equations, Eq. (49), possess time-varying coefficients and axe subject to residual

persistent disturbances. Due to difficulties in treating such systems in continuous time, we

propose to discretize the state equations in time. Following the usual steps, 14 the state

equations in discrete time can be shown to be

xk+l = _kx_ + FkE0kuck + FkDkdk, k = 0,1,... (51)

15

where x = [qT dllT]T

disturbance vector and

A= [-Mo' (M a

expressed as

is the psuedo-inverse of E0.

For the closed-loop control, we consider LQR. control, which requires recasting the equa-

tions of motion in state form. Adjoining the identity dll = ill, the state equations can be



where

x_ =x(kT), uc_ = u_(kT), d_=d(kT), k=0.1,...

,_, =exp AkT, Fk = (exp AkT - I) A'[,1Bk, k = O, 1,...

E0k =E0 (kT), D_, = D (kT), k = O, 1,...

(52)

in which T is the saznpling period and

Aj, = A(kT), Bk = B(kT) (53)

In view of the above discussion, we assume that the effect of the persistent disturbances has

been reduced drastic&lly by the feed_forward control, and design the feedback control in its

absence. This design is according to a discrete-time LQK with prescribed degree of stability.

To this end, we consider the performance measure

N-1

k=O

where PN and Qk are symmetric positive semidefinite matrices, Rk is _ symmetric positive

definite matrix, _ is a nonnegative constant defining the degree of stability and NT is the

final sampling time.

The optimization process using the performance measure given by Eq. (54) can be re-

duced to _ standard discrete-time LQR. form by means of the transformation

Xk = eakxk, tick = eakuck, PN = e-2aN pN (55a, b, c)

Multiplying Eqs. (51) through by e a(k+l) using Eqs. (55a,b) and ignoring the small perturbing

term, we obt_ the new state equations

x:_:+l = e°' ((I'k_}:k + 7kEo_;fi, ct;), k = 0, 1,..., N - 1 (56)

Similarly, inserting Eqs. (55) into Eq. (54), we obtain the new performance measure

N-1

k=O

(57)
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It can be shownthat the optimal control law has the form 14

dck = G_k, k = 0,1,...,N- 1 (58)

where G_ are gain matrices obtained from the discrete-time Ric_ti equations

=-- 2_, T T _ -1 2a T 1.,T A
GN-_ (e Eo,N__FN__PN+I_,FN__Eo,N-_+RN-_ ) e E0,/v_ _ Iv__PN+I__N-_,

i = 1,2,... ,N; _b = e-2aNpN (59a)

+ GT__RN-_GN-_ + QN-_, i = 1,2,..., N; PN = e-2'_NPN (59b)

Equations (59a) and (59b) are evaluated alternately for GN-1, PN-1, GN-2, ibN-2,..., Go,

given the final value of ibN.

Inserting the control law, Eqs. (58), into Eqs. (56), we obtain the closed-loop transformed

state equations

e_+l = e= (v_ + r_E0kG_) ek, k = 0,1,... (6O)

Then, recalling Eq. (55a) and restoring the persistent disturbance term, the closed-loop state

equations for the original system can be written in the form

xk+1 = (<I'k+ rj,EokGt) xt + rkDkdk, k = 0,I,... (61)

8. NUMERICAL EXAMPLE

The example involves the flexible space robot shown in Fig. 1. Numerical values for the

system parameters are as follows:

L1 = 1 m, dl = 0.5 m, L2 = L3 = 5m, L4 = 1.66m

ml = 10 kg, rn2 -- rn3 ---- lkg, m4 = 0.1 kg

•/1 = 20 kgm 2, J2 = 3 kgrn 2, EI2 = EI3 = 122.28 Nm 2

17



The quasi-comparisonfunctions for the flexible arm were chosenas a linear combination of

damped-free and damped-clamped shape functions. Both families of shape functions have

the functional form

1

¢_= _ [coshA_x/L- cosA,x/L - _; (sighA,_/L - sinA;_/L)], i = 1,2,...,

The values of Ai and _i for each family are given in Table i. They correspond to two

damped-free and three damped-clamped shape functions, for a total of n = 5 for each

flexible arm.

The initial and final end-effector positions are defined by

Xi = 9.757 m, Y_ = 1.914 m, 64; = 0 rad

Xf = 5.000 m, Yy = 1.914 m, 84f = -_r/2 rad

and we note that the path from the initial to the final position represents a straight-line

translation, while the orientation undergoes a 90 ° change. In terms of time, the translational

and rotational accelerations represent one-cycle sinusoidal curves.

The maneuver time is t f = 2.5 s. The zero-order actuator forces and torques to carry

out the maneuver are shown in Fig. 3.

The control of the elastic motions and the perturbations in the rigid-body motions was

extended to t = 4 s. Note that for 2.5 s < t < 4 s the system is time-invariant, during

which time the control gains can be regarded as constant. The weighting matrices in the

performance measure are

Qk = 10I, R_ = I, PN = 10I

The degree of stability constant is cr = 0.1. Moreover, the samping period is T = 0.01 s and

the number of time increments is N = 350.

Time-lapse pictures of the uncontrolled and controlled robot configuration are shown

in Figs. 4a and 4b, respectively, at the instants 0, 1, 1.5 and 2.5 s. Figures 5 and 6 show

time histories of the errors in the end-effector position. The discrete-time open-loop and

18



closed-looppoles for cx = 0.01 are given in Tables 2 and 3. For comparison, Fig. 7 shows the

time history of the errors and Table 4 gives the dosed-loop poles for c_ - 1.

It should be pointed out that the actuator dynamics was also included in the computer

simulation, but the effect turned out to be small, n

9. CONCLUSIONS

An orderly kinematic synthesis in conjunction with the Lagrangian approach permits

the derivation of the equations of motion for an articulated multibody system, such as

those describing the dynamical behavior of a flexible space robot, without the imposition

of constraints. The equations are nonlinear and of relatively high order. A perturbation

approach permits the separation of the problem into a zero-order problem (in a perturbation

sense) for the rigid-body maneuvering of the space robot and a first-order problem for the

control of the elastic motions and the perturbations from the rigid-body motions. The

robot mission consists of carrying a payload over a prescribed trajectory and placing it in

a certain orientation relative to the inertial space. This represents the zero-order problem

and the control can be carried out open loop. The first-order equations defining the first-

order problem (in a perturbation sense) are linear, time-varying, of high-order and subject

to persistent disturbances. The persistent disturbances are treated by means of feedforward

control. All other disturbances are controlled closed loop, with the feedback control being

designed by means of discrete-time LQR theory with prescribed degree of stability. In a

numerical example, the controls derived by the perturbation approach are found to work

satisfactorily when applied to the original nonlinear system.
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Table 1. Shape Function Coefficients

i

1

2

3

4

5

Ai 6_

1.8751 0.7341

4.6941 1.0185

7.8548 0.9992

10.9955 1.0000

14.1372 1.0000

Table 2. Discrete-Time Open-Loop Poles

No. Pole Location

1,2 -0.840 4- 0.543i

3,4 -0.778 4- 0.629i

5,6 -0.700 4- 0.714i

7,8 -0.690 4- 0.724i

9,10 0.586 4- 0.810i

11,12 0.629 4- 0.778i

13,14 0.902 4- 0.431i

15,16 0.921 4- 0.390i

Mag. No. Pole Location M_.

1.000 17,18 0.991 4-0.135i 1.000

1.000 19,20 0.9944- 0.107i 1.000

1.000 21,22 1.000 1.000

1.000 23,24 1.000 1.000

1.000 25,26 1.000 1.000

1.000 27,28 1.000 1.000

1.000 29,30 1.000 1.000

1.000 31,32 1.000 1.000
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Table 3. Discrete-Time Closed-Loop Poles for a = 0.1

No. Pole Loc_tion

1,2 -0.169 4- 0.546i

3 0.493 x 10 -2

4 0.120 x 10 -1

0.125

0.204

7,8 0.302 ± 0.148i

9,10 0.454 4-0.493i

11,12 0.468 4-0.323i

12,13 0.536 + 0.500i

15,16 0.749 + 0.860 x I0-Ii

17 0.792

Mag. No. Pole Location

0.572 18,19 0.803 4-0.976 x i0-1i

0.005 20 0.805

0.012 21 0.807

0.125 22,23 0.814 4-0.362 x I0-2i

0.204 24,25 0.817

0.336 26 0.817

0.670 27 0.819

0.569 28,29 0.8214- 0.366 x I0-2i

0.733 30 0.822

0.754 31 0.822

0.792 32 0.827

Mag.

0.809

0.805

0.807

0.814

0.817

0.817

0.819

0.821

0.822

0.822

0.827

Table 4. Discrete-Time Closed-Loop Poles for a = 1

No. Pole Location

1 -0.566

2,3 -0.160 4-0.186i

4,5 -0.109 4-0.275i

6,7 0.062 4-0.088i

8 -0.177 x 10-I

9,10 0.779 x 10-_ -{-0.209{

11,12 0.072 4-0.088i

13,14 0.118 4-0.016i

15,16 0.132 4-0.920 x I0-2i

Ma_. No. Pole Location Ma_.

0.566 17,18 0.139 4-0.844 x I0-2i 0.139

0.246 19,20 0.150 4-0.022i 0.152

0.296 21,22 0.187 4-0.145i 0.236

0.108 23,24 0.198 4-0.288 × 10-1i 0.200

0.018 25 0.251 0.251

0.209 26,27 0.252 4-0.180i 0.310

0.114 28,29 0.279 4-0.490i 0.564

0.119 30,31 0.328 4-0.148i 0.360

0.132 32 0.430 0.430
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CONTROL OF A FLEXIBLE SPACE ROBOT

EXECUTING A DOCKING MANEUVER t

Y. Chen* and L. Meirovitch**

Department of Engineering Science and Mechanics

Virginia Polytechnic Instituteand State University

Blacksburg, Virginia 24061

ABSTRACT

This paper is concerned with a flexible space robot executing a docking maneuver with a

target whose motion is not known a priori. The dynamical equations of the space robot are

first derived by means of Lagrange's equations and then separated into two sets of equations

suitable for rigid-body maneuver and vibration suppression control. For the rigid-body

maneuver, on-line feedback tracking control is carried out by means of an algorithm based

on Liapunov-like methodology and using on-line measurements of the target motion. For the

vibration suppression, LQR feedback control in conjunction with disturbance compensation

is carried out by means of piezoelectric sensor/actuator pairs dispersed along the flexible

arms. Problems related to the digital implementation of the control algorithms, such as

the bursting phenomenon and system instability, are discussed and a modified discrete-time

control scheme is developed. A numerical example demonstrates the control algorithms.

1. INTRODUCTION

One of the functions of a space robot is to deliver payloads accurately and smoothly to a

moving target. An example of such a space robot is shown in Fig. 1. The robot consists of a

rigid base, two flexible arms attached to the base in series and an end-effector/payloaxi. To

carry out the mission described, the space robot must have its own control system enabling

the platform to translate and rotate and its arms to rotate. In this paper, the target motion

is assumed not to be known a priori, so that the control permitting the space robot to execute

t Supported by the AFOSR Research Grant F49620-89-C-0045 monitored by Spencer

T. Wu and by the NASA Research Grant NAG-I-225 monitored by P_ymond C.

Montgomery.
* Graduate Research Assistant.

** University Distinguished Professor, Fellow AIAA.



the docking maneuvermust be basedon on-llne measurements.

The equations governing the behavior of space robots are nonlinear and can be expressed

in the general form of the state equation

f(x,u)

and the output equation

y= g(x) (lb)

where x is the state vector, u is the control force vector and y is the output vector, usually

defined as the position and orientation variables of the end-effector. The target output vector

Yt is defined as the position and orientation variables of the target. We can then define the

error vector as

e=yt-y (2)

The problem reduces to that of designing a control law u(t) so that e and its time derivative

are driven to zero.

There are two significant differences between industrial robots in current use and space

robots considered here. In the first place, industrial robots are mounted on a fixed base,

whereas space robots are mounted on space platforms capable of translations and rotations.

The second significant difference is that space robots must be very light, and hence very

flexible, unlike industrial robots characterized by very bulky and stiff arms. The flexibility

of the robot arms causes elastic vibration, which tends to affect adversely the performance of

the end-effector. Both a floating platform and flexibility are being considered in this paper.

In the case of space-based robots, research has been carried out on the assumption that

the platform floats freely, 1-6 i.e., that there are no external forces and torques acting on the

system, which implies that the system linear and angular momentum are conserved. For

a space robot tracking a moving target, it is unrealistic to make such an assumption, so

that algorithms concerned with free-floating space robots are not applicable to the problem

considered here.



The most commonly used approach to robotics can be described as follows: first, inverse

kinematics is performed to obtain the desired robot configuration trajectory qd(t) from the

desired end-effector trajectory yd(t). Then, using the system equations of motion, inverse

dynamics is performed to obtain the control force realizing qd(t). If the target motion is

known a priori, the end-effector's trajectory, as well as the robot trajectory, can be deter-

mined by an off-line planning algorithm. For a kinematically- redundant robot, such as the

one considered here, the robot redundancy can be used to a_ieve optimality. _

If the target motion is not known a priori, planning is impossible. Even when the target

motion is known, it is very likely that some unexpected disturbance can cause errors. In view

of this, on-line feedback control for the tracking problem, whereby the control decision is

based on measurements of the current output error, appears more attractive. The technical

literature on this subject is not very abundant. For tracking control, the Liapunov stability

concept appears quite useful. Wang s used it to design a guidance law for a spacecraft docking

with another spacecraft. The two docking objects are _ssumed to be three-dimensional rigid

bodies and to have their own control system on board. Another assumption used in Ref. 8

is that the motion of the target decays to zero with time. Recently, Novakovic 9 presented

a technique using Liapunov-like methodology for robot tracking control problem. In this

paper, the _lgorithm presented in l%ef. 9 is adopted and modified for the trar_.king control of

flexible spare robots.

In the case of flexible space structures, maneuvering motions excite vibration of the

flexible members. There are two major control schemes for flexible manipulators. The first

is based on linearized models derived from the nonlinear equations of motion of the flexible

manipulator on the assumption that maneuver motions are much larger than elastic motions.

Such a perturbation approach was developed by Meirovitch and Quinn l°'n and applied by

Meirovitch and Kwak 12'13 to the maneuvering and control of articulated flexible spacecraft

and by Modi and Chang 14 and Meirovitch and Lim 15 to the maneuvering and control of

flexible robots. The second is the adaptive control, 18 which does not need dynamical models.

Instead, an auto-regressive-moving average (ARMA) model of system identification is used.
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A control law for flexible manipulators based on the Liapunov method was proposed

by Bang and Junkins. 17 It represents proportional and derivative control and includes a

boundary force as a feedback force. This control scheme is valid only for problems in which

the system approar_.hes an equilibrium point in the state space.

References 15 and 18 are concerned with flexible spare robots of the type considered

here, but the mission is more modest in scope. Indeed, in Ref. 15 the mission is to place a

payload in a certain position and orientation in spare and in Re/. 18 the objective is to dock

with a target whose motion is known a priori.

In this paper, a control scheme permitting a flexible spare robot to trar.k and dock

with a moving target whose motion is not known a priori is presented. For the robot

maneuver, on-line feedbaz.k tracking control is carried out by means of an algorithm based

on Liapunov-like methodology and using on-line measurements of the target motion. For

the vibration suppression, linear quadratic regulator (LQR) control in conjunction with

disturbance compensation is carried out by means of sensor/actuator pairs dispersed along

the flexible arms. A modified discrete-time control scheme is developed, and problems related

to the digital implementation of the control algorithms are discussed. The control algorithms

are demonstrated by means of a numerical exarnple.

2. EQUATIONS OF MOTION

The flexible spare robot and the coordinate systems are shown in Fig. 2. Body 0 repre-

sents the robot base, assumed to be rigid. Bodies 1 and 2 are the robot manipulator arms

attached in series to Body 0 and they are flexible. Body 3 is the end-effector/payload, also

assumed to rigid. For planar motion, the robot base is capable of two translations, z0 and

Y0, and one rotation, 00; the two flexible arms are capable of the rotations 01 and 02 and the

elastic vibrations ul and u2 and the end-effector is capable of the rotation 03. Referring to

Fig. 2, the displacement vector U0 and velocity vector V0 for a typical point in Body 0 are

Uo = R + CoTRo

v0 = R + cT 0R0

as follows:

(3a)

(3b)



Similarly, for Body I

U1 -- I:_ q- c0rLo -l-cT (rl q- Ul)

V1 -- I_ -{-Cr_oLo -{-cT_I (rl -{-Ul) -{-cTI/1

(4a)

(4b)

for Body 2

U2= R + CoTLo+ cT (L1+ un)+ C/ (r2+ u2)

V2= Ik+ C/&oLo+ C_1 (L1+ u12)+ cT6n

+cT_2(r2+ u_)+ c_a2

(5_)

(5b)

and for Body 3

u3= R +Co_Lo+ CT(L,+u,2)+ CT(L,+ u23)+ C[r3

V,= R + Co_oLo+ CT_.(LI+Ul,)+ CTu,_

+CT_,(L,+ u_,)+ CTu_3+CT_._,

(6a)

(6b)

where

[ cos 8, sin8, ]
C_= [_sinS_ cosS_J

i = 0,1,2,3

are matrices of direction cosines,

_= e_

ate skew symmetric angulat velocitymatrices,

I%=[z0 _/0]T, rl =[zl 0] T, r2=[z2 0] T

ate position vectors and

Ul= [0 _i]T,

ate elazticdisplacement vectors. Moreover,

ill2 -" tLllz1=Ll,

U2 = [0 U2] T

lZ23 = U21z2=L2

(_)

(8)

(9)

(_o)

(11)



The elastic displar.ements are discretized as follows:

i-1,2 (12)

where O_ ix) are vectors of quasi-comparison functions 19 and _ it) are vectors of general-

ized displacements. Regarding the robot _rms as beams in bending, the quasi-comparison

functions can be chosen as linear combination of the admissible functions

Ck - cosh T - cos -_- - _ sinh _ - sin , k - 1,2,... (13)

which represent the eigenfunctionsof a clamped-free beam for k odd and damped-damped

beam for k even, where At and ak are nondimensional parameters.

Using Eqs. (3)-(13), the kinetic energy of the system can be written as

T = _0= T_ = _ = ody _ p_vTVidD_ = qTMq
(14)

where q = [R T 00 01 02 03 _T _T] T is the configuration vector and M is the mass matrix

with entries given in Appendix A.

The potential energy for the system is due entirely to the elasticity of the robot arms

2 1 r (15)V=_iKi_i= qTKq
i---1

g --bloak-diag [0 _'I _'2]

and can be written in the form

where

EIi@_ _ @ dzi, i = 1,2

in which

(16)

(17)

are the stiffness matrices for Bodies i, in which EI{ denotes bending stiffnesses. Note that the

gravitational potential is ignored here on the assumption that it represents a second-order

effect.

The control forces acting on the robot system include the horizontal and vertical thrusts

Fz and F U acting at the base center, the external torque M0 acting on the base, the internal

6



joint torques M1, M2 and M3 acting at the joints and the distributed internal moments rl

and 1"2 generated by piezoelectric actuators on links 1 and 2. We define the control force

vector as F = [Fs Fy M0 M1 M2 M3 rl r r TIT. Then, the virtual work of the system

can be written in the form

6W =F=6zo + Fy6yo + Mo60o + M1 (681 - 680)

+M_(6o_-6o,-_'_(L,)6(,)+M_(6o_-6o_-_'_(L_)8(_)

% E rli¢[ T (Zl/) 6_ 1 ÷ 2-, r2_2 (z2i) 6_ 2 = Qr6q
i_l i=1

where Q is a generalized force vector defined as

(18)

q=cT (19)

The entries of the matrix G are given in Appendix A.

Lagrange's equations for the system can be expressed in the symbolic vector form

,(+) 0v_ - Oq+ o]=q (20)

Inserting Eqs. (15), (16) and (19)into Eq. (20), we obtain the system equations in the matrix

form

M (q) _l + C (q, dl) dl + Kq=Q (21)

The entries of the matrix C are also given in Appendix A.

Equation (21) represents the equation governing the motion of the flexible space robot. It

is used for computer simulation of the dynaxaical system. For the purpose of control design,

Eq. (21) is conveniently sepaxated into two sets of equations, rigid-body motion equations

and elastic vibration equations. To this end, we write q = [qT qT] T and Q = [QT QT] T,

where qr = [z0 y00o O1 02 03] T is a rigid-body displaz_eanent vector, qe = [_1T _T] T is

an elastic displacement vector and Qr and Qe are corresponding generalized force vectors.

Then Eq. (21) can be written in the partitioned matrix form

M,,.M,.,+. rc,-,-0,.,+. q,.].,..1[,.]+,.+ [q.]+[°o [I]: [,::,...



After some algebraicmanipulations, a_d ignoring higher-orderterms in the elasticdisplar.e-

ments, Eq. (22) can be separated into

Mr (qr) _1, + C, (qr,dir) di, + de (q, di,_l) = Q, (23)

and

Me ( q r) _ie + Ce ( qr , di, ) die + K e (qr , dt, , Tq, ) q6 + d r (qr , dtr , _tr ) = Q e (24)

where M, is the rigid-body part of the mass matrix Mrr and Cr is the rigid-body part of

Cr,. Moreover, Me = Mee, Ce = C_e, Ke consists of the stiffness matrix K and the part

due to elasticity in the matrices M_ and C_e and de and dr are disturba_uce vectors. The

entries of the various matrices are given in Appendix B. The term de in Eq. (23) is a linear

combination of qe, die and cle. It can be regarded a_ a disturbance due to the flexibility of

the robot arms. The term d, in Eq. (24) is a function of qr, dir and cir. It can be regaxded

as a disturbance due to the rigid-body maneuvering of the robot. Equations (23) and (24)

are coupled. The coupling between rigid-body motions and flexible vibration is provided

in Eq. (24) by the persistent disturbance dr from the rigid-body motion, which causes the

elastic motion qe, die and cle. In turn, the elastic motion disturbs the rigid body motion

through de in Eq. (23). Equation (23) is used for the design of the maneuver control for

tra_.king a moving target a_nd Eq. (24) is used for design of control for vibration suppression.

3. TRACKING CONTROL ALGORITHM USING LIAPUNOV-LIKE

METHODOLOGY

In this section, the general idea of Liapunov-like methodology for tracking control devel-

oped for rigid robots 9 is introduced.

The dynamical equation of a rigid robot is given by

M (q) _l + C (q, di) dl = Q (25)

and the kinematic relation between the robot configuration vector q and robot output vector

Ye is given by

ye = f(q) (26)



so that

and

y.= J(q)q (27)

yo= J(q)fi+J(q,q)q (28)

where

1 T

V "- _z z (29a)

z= (e+ fie)

in which flisa positivescalar.Ifthe controlisdesigned in such a way that

driving the error e = Yt - Y, and its time derivative 6 to zero.

function is defined by

(29b)

where ur is chosen in the form

(30a, b)

where e is an arbitrarily small positive scalar and V0 is the initial value of V, it is guaranteed

that the function V remains in the e-neighborhood of zero for t > ts, no matter how the

target motion changes. This ensures that the error e and its derivative 6 are also very close

to zero.

We consider the nonlinear control law

q = M (q) Ur + C (q,cl)Cl

hi A- h2 (32)
Ur = w zTj---------_

in which w is an arbitrarily chosen vector and

It can be shown that the control algorithm described above yields the desired result, i.e.,

Eqs. (30a,b).

(31)

h2 -" 0.Strzrz _ o'V (33a, b)

where J (q)= [0f/0q] is the Jacobian matrix.

Because traz..king is carried out by the end-effector, the traz.king problem consists of

To this end, a Liapunov



The control algorithm possesses the following advantages:

1) The control decision is made using on-line information of the current robot state (q, Cl)

and target _ (e, _ and _tt). The feedback control can automatically counteract ad-

verse disturbances in space and ar_ieve the final docking in an accurate and smooth

way.

2) The on-line calculation is relatively simple, a_ it involves neither inverse kinematic_ nor

matrix inversions.

3) Stabilityis alwsys guaranteed by Liapunov stabilitytheorem, as can be seen from

Eqs. (30),no matter how the target motion changes.

However, afterapplying the above algorithm directlyto our space robot system and sim-

ulating the system in both continuous time and discretetime, the resultsfrom discrete-time

system exhibited some undesirable phenomenon, although the performance of the continuous

system was good. As shown in Fig.3, in which the solidlinedenotes continuous-time results

and the dashed linedenotes discrete-timeresults,the control force in discretetime exhibits

periods of oscillatorybehavior. Further numerical simulations show that the magnitude of

the control force during chattering is bounded, although very large,and itsmean value is

close to the resultsof the corresponding continuous time system. Moreover, the occurence

of the oscillatingperiod israndom, and the length of the oscillatingperiods and the length

of the "good performance" periods are both unpredictable. This phenomenon is similar to

the so-called"bursting",which appears frequently in discrete-timeadaptive systems and has

been reported for almost a decade.2° Itisimportant to keep the control forcefrom bursting.

Otherwise the possibilityexiststhat the controlcannot be realized.To thisend, a modified

version of the above algorithm ispresented, which also takes into account the flexibilityof

the robot arms.

4. MODIFIED TRACKING CONTROL ALGORITHM FOR FLEXIBLE

SPACE ROBOTS

To apply Liapunov-like methodology to flexible spare robots, we first extend the kine-

10



matical relationgiven by Eq. (26) to flexiblespare robots as follows:

ze = z0 - L0 sin90 + L1 cos0z + L2 cos 82 + L3 cos83 - uz2 sin0z - tL23 sin02

Y6 = Yo + Lo cos 0o + L1 sin 01 + L2 sin 02 + L3 sin 03 + u12 cos 01 + u23 cos 02 (34)

#e "-- #3

For kinematical aaaJysis, we define Cl = [qT qT] T, where qr was defined earlier and q. =

[u12 u23] T. The Jaz.obian matrix 5r, obtained by differentiating Eq. (34) with respect to _,

has the form

,) = [Jr J,,] (35)

where

1 0 -Lo cosO0 -L1 sin01 - u12 cos 81 -L2 sin82 - u23 cosO 2
Jr = 0 1 -Lo sin 0o LI cos 01 - u12 sin O 1 L2 COS 02 -- U23 sin 82

0 0 0 0 0

__.

Hence, we can write the relations

- sin01 - sin02

cos 01 cos 02

0 0

-L3 sin 03

Ls cos 93
1

(36a)

(36b)

Ye = ,)_1 (37)

yo = 2_ + j4 (38)

The dynamical equation for the rigid-body motion of the space robot is given by Eq. (23).

We first define a nonlinear control law for Q, as follows:

q, = M, (q,) u, + C,(q,,o,r)q, (39)

Substituting Eq. (39) into Eq. (23), we obtain

Clr = u_ - M71de (40)

by

To prevent the bursting phenomenon, we propose a decoupled Liapunov function defined

1 2

= _z i, zi = _i + jSei, i=1,2,3 (41a, b)

11



Taking the derivative of Eel. (41a) and using Eqs. (37), (38) and (40). we obtain

= zih,-z, ([Jrur],- [JrM71de],), i-" 1,2,3 (42)

where [ ]i denotes the i - th element of a vector and hi axe the components of the vector

h = Yt - _tl + _ - J_lu (43)

Because Mr is a positive definite matrix, M, "1 is bounded, and we note that Jr is _so

bounded. Moreover, from Eq. (B.3) in Appendix B, we see that d6 is a linear combination

of qe, tie and @te. We then assume that de is bounded in accordance with our ultimate goal

of vibration suppression. Hence, we can assume that the term [JrM_'lde]i is bounded and

satisfies the relation

[JrM_-'d,], < 6,, i= 1,2,3 (44)

From Eq. (44), we have

[JrM_'lde]i < Izil6,, i= 1,2,3Zi

If we can determine a vector ur that satisfies the following conditions:

1 . 2
zi[Jru], = zihi + _c_,z i + Izil6i, i= 1,2,3

then

(45)

(46)

1 . 2
l)i = _aizil 2 + [jrM_-lde]i - [z'16i < -_a,z i =-ail_, i = 1,2,3 (47)

According to the Liapunov stability theorem, Eq. (46) is the sufficient condition for our

tracking problem. We further simplify Eq. (46) by assuming zi _ 0, so that

1

[J,u,li- hi + g_izi + sgn(z,)6i, i- 1,2,3 (48)

or

with

[J_u_]s - si, i = 1,2,3 (49)

• 1

+ Zai- [j.i_,,], + g,_,z_ + sgn(.i),_,

12
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Equation (49) can be expressed in the matrix form

where s = [Sl

a unique ur.

J_u, =s (51)

s2 s3] T and Jr is a 3 x 6 matrix. The solution of Eq. (51) does not yield

This agrees with Eq. (32) in the original control scheme in which w is an

arbitrarily chosen vector. Here we can simply prescribe the redundant degrees of freedom

and then solve Eq. (51) accordingly.

As a simple example, we constrain three components of ur by talcing

u,3 = u,_ = u,5 = 0 (52)

for the entire tracking period and use Eqs. (51) to solve for the other three components of

ur on-llne, with the result

Url : 81 Jr L3 sin _3t/,r6

ur2 -- s2 -- L3 cos/_3Ur6 (53)

t/,r6 = 3 3

The above algorithm for ur, together with Eq. (39), represents the maneuver control for

a flexible space robot tracking a moving target whose motion is not known a priori. The

control algorithm requires that the following conditions be satisfied:

1) The output error vector e and its time derivative e can be measured on-line.

2) The target output acceleration Yt can be measured or estimated on-line.

3) The robot rigid-body displacement vector qr and its time derivative qr can be measured

on-line.

4) The elastic tip displacement vector q= and its time derivatives Cl= and cl= can be measured

on-Ilne.

5) The elastic vibration of the robot arms should be controlled so that a reasonable value

for the upper bound 6i can be set.

In addition to the advantages of the original algorithm mentioned in Sec. 3, the modified

control algorithm presented here provides two extensions from the original one. 9 The first ex-

tension is that the flexible effect of the robot arms is incorporated into the control algorithm.

13



It is reflected in the kinematic relations expressedby Eqs. (34) and in the term sgn(zi)6i in

Eq. (50) which is associatedwith the vibration disturbance vector d_ in Eq. (23). The second

extension consists of the use of decoupled Liapunov functions, Eqs. (41), to eliminate the

bursting phenomenon (Sec. 3) when the control algorithm is implemented in discrete-time.

5. VIBRATION CONTROL

Because of coupling between the rigid-body motions and the elastic vibration, the per-

formance of the traz.king control depends on how well the vibration suppression is carried

out. Without vibration control, the trazJcing cannot be truly realized for a flexible space

robot. Our objective is to drive the elastic motion state qe, Cl_ close to zero during the

trazking and docking operation. We recall that the motion of the elastic vibration of the

space robot is described by Eq. (24), which represents a linear time-varying system with a

persistent disturbance term dr due to the rigid-body motions.

We propose to control the vibration in discrete time. To this end, we separate the

generalized control force Q_ into

Q+(k)-- Q+r (k) + Q++ (k) (54)

The discrete-time control algorithm for disturbance compensation is expressed by

Q,r (k) = dr (qr (k), _l, (k),Or (k)) (55)

If the disturbance is cancelled perfectly, Eq. (24) becomes

Me (qr) _h +C,_(qr,qr)dle + Ke (qr,or, i!lr)qe = Qee (56)

Letting x(k) = [qe(k) T (/¢)r] T be the state vector and u(k) = Qee(k) the control

vector, the discrete-time state space counterpart of Eq. (56) can be written as

x(k + 1)= ,;t (k) x (k) +/) (k) u (k) (57)

where the coefficient matrices axe given by

f4(k) = e A(kT), B(k) = (e A(kT) -- I) A T (kT) B(kT)

14
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in which

ACt)=[ 0 x (59a, b)

The performance index for the discrete-time LQR is given by 21

1 _ uT_l= _ [xr(k)Q(k)+ (k)Ru(k)] (60)
k=O

yielding the control law

u (k) = - (n + B (k) k (k)/3 (k)) -1 h y (k) k (k) A. (k) x (k) (61)

where R (k) satisfies the discrete-time algebraic Riccati equation

k (k) = _r (k) [K (k) - k (k)/_ (k) (R + _r (k) k (k)/_ (k)) -1 _r (k) k (k)]A (k) + Q

(62)

Direct application of the discrete-time control algorithm described by Eqs. (55) and (61) to

our problem causes severe instability. The reason is that the discrete-time control force Qer

in Eq. (55) is not able to cancel the continuous disturbance term dr in Eq. (24) perfectly.

Hence, the LQR control design based on Eq. (56), in which the disturbance is absent, is no

longer appropriate. The error accumulates with time and it finally results in instability. To

resolve this problem, a modified vibration control algorithm is proposed in the next section.

6. MODIFIED DISCRETE-TIME VIBRATION CONTROL ALGORITHM

An exaanination of the disturbance term dr in Eq. (B.14) of Appendix B, i.e., an exam-

ination of

dr = MTo, r + Cer_lr (63)

reveals that _ in the first term is the major cause of the system instability. Usually _lr (k)

is not available and ftr (k - 1) is used as an estimate of ftr (k). Stable performance of the

system can be achieved only if Clr (k) can be measured or estimated perfectly. Even a very

small error in Clr appearing in Eq. (63) can result in failure of the LQR design. To avoid

use of ftr in Eq. (63), we replace clr by ur, so that the disturbance compensation scheme

15



become8

q,, (k) =d, (q, (k), q_(k), u, (k))

=Mr (qr (k))u, (k)+ Ce,(q, (k), _lr(k))Clr(k) (64)

where ur (k) is calculated by the traz, king control algorithm given by Eq. (51). We then

substitute Eqs. (63), (64) and (40) into Eq. (24) and obtain the system equation as follows:

Me (qr) ck + Ce (qr, Clr) el, + Ke (qr, Clr,Clr)qe- MTM_-Ide = Qe, (65)

As shown in Appendix B, de can be expressed as

de = Mteq, + Cr,Cle + (K_/+ KS) q, (66)

where K_ and K b axe given by Eqs. (B.6) and (B.8), respectively. Substituting Eq. (66)

into Eq. (65), we obtain the modified lineax time-vaxying system

Me* (q,-)/_le + C* (q,., Clr) die + K* (qr,_lr,_lr) qe = Q,, (67)

where, comparing Eqs. (56) and (67), we observe that matrices M;, C_ and K* represent

modified coefficient matrices given by

M; = M,- MT M_ "1 Mr, (68a)

C; = C, - MT M_'ICr, (68b)

* T -1 K eg e = ge- M/.eM_. (g_,l + 6') (68c)

Based on Eqs. (67) and (68), we can follow the same procedure as in Sex:. 5 and obtain the

control law for Q,,. The simulation results using the modified control scheme showed stable

performance. Further numerical simulations showed that even in the case of a system with

only the mass matrix Me modified, i.e., a system described by

M; (qr) Cl, + Ce (qr,cl,) el, + K, (qg, Clr, cl,) q, = qe, (69)

the LQR control law is still able to produce good system performance. This is because the

first term on the right side of Eq. (66) is dominant, so that using C, and Ke instead of Ce*
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and K_, respectively, is equivalent to dropping the second and third terms in Eq. (66), which

does not a/l;ect the system performance very much.

I'. NUMERICAL EXAMPLE

We assume that the parameters for the flexible space robot shown in Fig. 1 have the

ValUes

m0 = 40.0 kg,

L0 = 2.5 m,

Sz = Sy =0,

ml = m2 = 10.0 kg,

L1 = L2 = 10.0 m,

ms = 2.0 kg

L3 = 2.0 m

(70)

simulation purposes, we choose an exarnple target trajectory as follows:

zt(t) =10.0 sin t

yt(t)=lO.O+lO.Osin(_ot), t E [0,5.0 s] (71)

3r

o,(t) =_t

The initial conditions of the space robot are given by:

q,(0) =[0.0 -15.0 0.0 0.5r 0.4775r 0.25_r] T, _1,(0)=0
(72)

q°(0)= [0.01 ... 0.01]r , q,(0) = o

The parameters of the control synthesis design are

/_=20.0, _=10 -3 , t,=2.Ss, 6i=20, i=1,2,3 (73)

We designate the three redundant degrees of freedom in ur as ur3, ur4 and urs. They

are defined for two different cases as follows:

Case 1:

u,_ = u,4 = u,s = 0, 0 < t < 5 s (74)

17

Iz=83.333kgm 2, I v=333.333kgm 2

EI1 = EI2 = 104 kg m 2

The target motion is not known a priori and must be measured on-line. However, for



Case 2:

O,

4/,,o/t3,
-.3 = -4 Oo/t},

O,

O,
O,

O,

4Ae /t},
u_5 = -4A02/t_,

O,

t_<0

0 < t <_ tl/2 (75a)
ill2 < t <_tI

t>t!

t<_O

0 < t <_ tt/2 (75b)
t!/2 , t <_ t I

t>tf

t<_O

0 < t < t//2 (75c)
tiI2 < t <_ t I

t>t I

where tI = 4.0 s, A00 - _ rad, A81 = _ rad, and A62 = -_ rad.

For a rigidspace robot, Eqs. (74) and (75) represent constraintson the accelerationof

the robot configuration. In Case I, the mission amounts to keeping the base attitude 0o

and the two joint angles 91 and _2 constant while tracking a moving target. In Case 2,

the mission implies bang-bang maneuvers involving a base attitude change of AS0 and arms

angle changes of A91 and A92 while tracking a moving target.

The constraintscannot be realizedperfectlyfora flexiblespace robot due to disturbance-

causing vibration. However, the performance can be improved by vibration control. Because

the major objective here is to traz.kthe moving target, we use the constraint equations,

Eqs. (74) and (75), to eliminate the robot redundancy.

For vibration control, the LQR. design parameters axe chosen as

R = diag [l,_x,_ I,_×,,]

Q = diag [2.0 x 1041.×. 1041nxn 2.0 x i041,_×,_

(76)

The elastic displacement for each of the two arms was modeled by means of five quasi-

comparison functions. 19

The system performance under the tracking and docking maneuver is simulated over 5 s.

To this end, the tracking control algorithm presented in Sec. 4 and the vibration control
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algorithm presented in Sec. 6 are used. The simulation is performed in discrete-time with a

sampling period T = 0.001 s.

Figures 4a and 4b show time-lapse pictures of the robot configuration for Cases 1 and 2,

respectively. For Case 2, time histories of the tracking error e and its time derivative 6 are

shown in Figs. 5a-5c, time histories of the tip elastic displacements of the two flexible links

are shown in Fig. 6 and time histories of the control forces and torques for the rigid-body

maneuver are displayed in Figs. 7a-7c. Time histories of the control torques acting on the

flexible bodies for disturbance rejection and LQR control are shown in Fig. 8 and Fig. 9,

respectively. The results are very satisfactory, with control achieved in less than one second.

8. SUMMARY AND CONCLUSIONS

This paper is concerned with the control of a flexible space robot executing a docking

maneuver with a target whose motion is not known a priori. The control is based on on-

line measurements of the target motion. The dynamical equations of the space robot are

first derived by means of Lagrange's equations and then separated into two coupled sets

of equations suitable for rigid-body maneuvers and vibration suppression. Controls for the

rigid-body maneuver and vibration suppression are developed and implemented in discrete

time. Problems arising from digital implementation of the control algorithms are discussed.

Then, modifications of the control algorithms so as to prevent the problems are made.

The control scheme presented can be apphed to two-dimensional, as well as three-

dimensional problems. Furthermore, it has the flexibility of solving different problems by

defining appropriate output vectors other than the end-effector output vector. For example,

if the mission involves tracking and docking with an orbiting target while its base attitude is

to be kept constant, we can define the output vector as Ye = [:re Ye 0e 80]T and the target

output vector as Yt = [zt Yt Ot 0]T, and then the proposed tracking control algorithm can

be used to drive the error vector e = Yt - Y_ and its time derivative 6 to zero.

A numerical example is used to demonstrate the control scheme. The simulation results

have shown very good system performance in both the trar3dng maneuver and the vibration

suppression.
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APPENDIX A - Matrices in the Equations of Motion

The mass matrix M appeaxing in Eq. (14), as well as in Eq. (21), is defined as

M

Mo

m17 . •. m67 rn77

m18 .. • m68 rnTs

mT mT
mr m2Ts
mT_ mT
mT7 mT8+ blT

mT_,+ b2T mT
mT_ mT8

rnss

(A.1)

with

in which

_r 0

rn, 0 -S_= a] a2 -Sss3
0 rn, -Sty a3 a4 Ssc3

-S== -Sty ho as a6 S3Los3o
al a3 a5 ?1 a7 a8

a2 a4 a6 a7 72 a9

--$3S3 $3c3 S3Los30 as a9 13

(A.2)

a I = --_t131 -- ¢T_ici, a2 -- --_$232 -- ¢T_2c 2

a 3 = _tlCl -- ¢T_131, a4 -- _t2c 2 -- ¢T_232

a5 = _tlLo$lo + _T_ILoClO, a6 = _2Loa20 + _T_2Loc20

a7 = St2Lic21 + S_2cI)T2_1321 - _T_2LI321 + _T_2{]_IT2_IC21

T
a8 = $3LIc31 + S3_1T2_IS31, a9 = _3L2c32 + _3(]_23_2332

bl C]_t2CI)T2_1321, b2 - T-- = -O120t2_2s21

21= I, + _1rm77_1, ?2=/,2 + _2rm88_2
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and

m17 = -_tlSl_ m27 -- _tlCl,

m47= ii + (m_ + ms) LI_2,

m18 = --_t2s2, m28 = _t2c2,

m37 = _tlL0sl0

m57 = S_2@12c21, m6T = SsO12c31

ms8 = _12c21, rn67 = $s@12c31

m4s = _t2L1c21, m58 = _2 + m3L2_23, m6s = $3_2sc32

WZ88 = A2 + rr_3_23cI_2T 3

(A.4)

and we note that si = sin 0i, cl = cos 0i, sij = sin (0i - 0i) and c_i = cos (0i - Oj). Moreover,

we have used the following definitions:

Wt_ = _0 + rftl + _2 "+"m,3

S_z = Soz sin 00 + Soy cos 00 + (ml + m2 + m3) Lo Cos 0o

Sty = -Soft cos 0o + Soy sin 00 + (ml + m2 + m3) Lo sin 00

St: = $1 + (m2 + ,m) L1, S_2 = $2 + m3L2

I_o=/0, + Ioy+ (ml + m2+ ,m) Lo_

It_ = S_+ (m2+ m3) L_, h2 =/2 + ,mL_

(AS)

in which

B _p_dD_ i=0,1,2,3mi = ody

Si =/BodyiPixidDi' Ii =/BodyiPiz_dDi'

Sol =/Body 0 poxdDo, Soy =/Body o poydDo

/B poz_dDo, Ioy =/B P°y_dD°I0, = ody o ody o

/B p,_,dD,, _' =/B p,z,@,dD,_ = ody , ody

B p_¢,¢rdD,, _ = I,2A_ = ody

_12 --" _1 (Z1) zI=L 1, _]_23 -- _2(Z2) z2=L 2

23
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The matrix G in Eq. (19) is defined as

G

1 0 0 0 0 0 0 T 0 T

0 1 0 0 0 0 0 T 0 T

0 0 1 -1 0 0 0 T 0 T

0 0 0 1 -1 0 0 T 0 T

0 0 0 0 1 -1 0 T 0 T

0 0 0 0 0 1 0 T Or

0 0 0 0 -_ (L1) 0 G1 0

o o o o o -_(L2) 0 G2

where primes denote spatial derivatives and

(A._')

a, = [®"(=,,) ... ®"(=,_)] _= 1,2 (A.S)

in which m is the number of actuators on each link. Here m is equa/to the number of modes

and Gi are square matrices.

The coefficient matrix C in Eq. (21) is defined as

C __

0 0 C,3 C14 C15 C16 C17 C18

0 0 C2s C2_ C25 C26 C27 C2s

0 0 0 Cz4 C35 C36 Cs7 Css

0 0 C4s 0 C45 C4_ C47 C48

0 0 Cs3 C54 0 C56 C5_ C58

0 0 Cs3 C64 Cs5 0 C67 C6s

0 0 CTs C74 CTs C76 0 C7s

0 0 C83 Cs4 Cs5 Cs6 Cs7 0

(A.9)

where

C13 -- StySo, C14 = (-SflCl + ¢T_181)_1, 015 = (-St2c2 + *T_2"2)@2

C16---$3c3(}3, C17----2¢Tc181, Ci8 =-2¢rc282

C26=-S'3s303, C2, =-20_101, c2, =-2_8#2

c. = (s,,Looio- ¢_,_o.,o)o,,c,,= (s,,Lo_,o- ,_,Lo.,o)e,
C'36 = S_Loc3o83, C3"t = 2_'rLoc].oS1, C3s = 2.0¢'TLoc2o82

c,, =(-s,,Lo,,o+¢_,Lo,,o)Oo
C45 = (-S,2L1,921 - CT%e2Llc21 + S,2_'T2%elC21 - cT%e201T2%¢1821) @2
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T -T

c,_: (-s,,Lo_2o+¢_Lo,_o)Oo
C54 -"

Css =

C58 =

C64 =

C67 =

C74 --

C76 =

C84 =

C86 =

T8 =2S3ssl,I,r_}2, C6s = 2S3sn'I'23 2, Cn -O,1LoClo/_o

- (A,+(m,+m_l®,,®_,)_10,,c,, =(-s,.,,®,,- ¢_,o,1®,,)o,

(_,.2,¢,2- ®_2_,_,,*,2)0,,c,,=- (A2+,,,,®.®_,)_,o,

(A.10)

APPENDIX B - Matrices in the Partitioned Equations of Motion

The mass matrix Mr and the coefficient matrix Cr in Eq. (23) are defined aa

mt 0 -St= -Stl31 -S$232 -$333

0 rat -Sty Sflcl S_2c2 $3c3

-St= -Sew ho S¢lLoSlo S¢2L0520 S3Los30

--SZlSl StlCl StlLOSlO I,I Sf2LIc21 $3LIc31

-S, asa 5,2c2 S,2Los20 S, aLlc2, ha 53L2c32

-Ssss S3cs SsLosso S3Ltcn S3Lacs2 /3

C_. --

'0 0 StyO0 --_tlCI01 --St2C202 --_3C3_3

0 0 0 StlLoClOO1 SaLoc2oO_ S3LocsoS_

0 0 -StlLoCloO.o 0 -St2Lla2102 -$3L18318.3

0 0 -S,2Loc2o._o S,2L1321".81 0 -S3L2a3283

0 0 -$3Loc3o8o S3LIs3101 SBL2a3282 0

The disturbance vector de in Eq. (23) is defined as

(B.1)

(B.2)

de = M,,_, + C,,cl, + (K*M + Kc)q, (B.3)

25



where

Moreover,

in which

g_=

"m17

m27
Mre --

m67

--2_T3101
-r "

2¢_1LoClo01

0

2_T2 St2S21_1

2_T2&s31el

m18

m28

m68

-2#r_2e2
-2#rs262

2,i,_Loc2oe2
-2,i,_Lls21e2

0

--_TcI_I -.i._2_2
-,_1_1 -_2_

kM1 -'i'_Lls21e2
'I'T2&2s21_l kM2
.*T2s._1_1®2_s.a2_2

k_l- -_ (_1_0+_100- Lo_lo00)+_1_2(S..2102+S._l_)

k,.,2=-_ (c2_0+s200- Lot2000)- _L1s21_1+®2aSas_2_

and

in which

KS=

--_C1012 --_C2022

--_ LOSlO _2 -_Los20022

1_1 -,i,_L_2_e2
-®Ss.2¢21el2 kc2
-_Tl2Szczle2 _ - (JILT S3¢32_22

T "2 "
kc1 = _TLosl0802 + _2&ac21Oa + _Ta&ca_Oa2

*Tr s _}2 -T '2 _Tsaca202kc2 -- _vt2_o 20 0 + _2LIc2181 +

The mass matrix Me and the coefficient matrix Ce are defined as

Me "- [hi -}- (m2 + ma) _12_T2 _12_Tc21_t2_]_T2c21 A2 + rna@23@Ta ]
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and the coei_icient matrix Ke is defined as

Ke = K + KM + Kc (B.12)

wh_e

and

K= [i_'10

[ oKM= _t2_r2s21_1

Kc = [- (A1

The disturbance vector dr is defined as

o]K2

o 1

-(^_ +_®_®r_)_

(B.13)

(B.14)

(B._5)

dr -. MT_Ir -i,- Cer_lr (B._6)

where Mre is given by Eq. (B.4) and

[00 0 -_,lLoclo_)o 0Cer= 0 -_t2Loc20_)o _i2Lls216)l
(B.17)
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HYBRID EQUATIONS OF MOTION FOR FLEXIBLE
MULTIBODY SYSTEMS USING QUASI-COORDINATESt

L. Meirovitch* and T. Stemple**

Department of Engineering Science & Mechanic.
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Bl_burg, VA 24061

Almtract

A variety of engineering systems, such as automo-

biles, akrcrsR, rotorcrLft, robots, spacecraft, etc., can
be modeled as flexible multibody systerns. The individ-

ual flexible bodies are in general characterized by dis-

tributed parameters. In most earlier investigations they

were approximated by some spatial discretiz&tion pro-
cedure, such as the classics] P_ylsigh-BJtz method or

the finite element method. This paper presents a rr_th-

ematic_l formulation for distributed-parameter multi-

body systems consisting of a set of hybrid (ordinary

and partial) differential equations of motion in terms

of quasi-coordin&tes. Moreover, the equations for the
elastic motions include rotatory inertia and shear de-

formation effects. The hybrid set iscast instateform,

thus making itsuitablefor controldesign.

1. Introduction

A problem ofcurrent interestisthe dyn_nics and

controlof rnultibodysystems. Indeed, a varietyof en-

gineering systems, such as automobiles, aircra_, to-
torcra.ft, robots, spacecraft, etc., can be modeled as

multibodies. In many engineering applications the bod-

ies can be assumed to be rigid (Refs. 1-12). In many

other applications, the flexibility effects have to be in-

cluded (Refe. 13-24). For the most pa_t, flexible bodies
have diAtributed mass and stiffness properties, which

is likely to cause difficulties in producing a solution.

As • result,itiscommon practiceto approxirnstedis-

tributedsystems by discreteones through spatialdis-

cretization,which can be carriedout by means of the

classicalR_yleigh-Kitz method or the finiteelement

method (Kef.25). The discretisationprocessamounts

toeliminationofthe spatialcoordinates.The equations

of motion for the discretizedsystem are derived quite

often by the standard Lsgrangian approach. For more

complex motions, an approach using quasi-coordinates

seems to offer many advantages (Refs. 26-29).

t Supported by the AFOSK Research Grant F49620-

89-C-0045 monitored by Spencer T. Wu and by the

NASA Re.search Grant NAG-I-225 monitored by Ray-

mond C. Montgomery.
• University Distinguished Professor. Fellow AIAA.

• * Graduate Research Assistant.

Copyright (_)1993 by L. Meirovitch. Published by
the American Institute of Aeronautics and Astronau-

tics, Inc. with permission.

Quite recently, there has been some interest in

working with distributed model_ as much as possible,

thus avoiding truncation problems arising from spa-

tial discretizffition. Consistent with this, hybrid (ordi-

nary sad partial) differential equations of motion have
been derived for flexible multibody systenm in Refs. 30

and 31, using the approach of Ref. 25. Hybrid equa-

tions of motion in terms of quasi-coordinates have been

derived for the first time in Ref. 26 for a spinning rigid

body with flexible append_es sad generalized later in

Ref. 32 for a flexible body undergoing rigid-body and

elastic motions. This paper extends the general theory

developed in Ref. 32 to systems of flexible multibod-
ies. In addition, the equations for the elastic motions

include rotatory inertia and shear deformation effects.

2. Kinematic.

We are concerned with structuresconsistingof a

ch&in of articulatedbodies i (i = I,2,...,N), which

impliesthat two adjacent bodies i- I sad i are hinged

at O_ (Fig. I). To describe the motion of the system,

itwillprove convenient to conceive of s set of body

axes ziy_z_with the originst O_ and &ttsz.hedto body

i in undeformed state. The bodies are mmumed to be

slender, with axis z_ coindding with the long axis of

the body. As the body deforms, z_ remains tangent to

the body at O_. At the same time, we consider another

set of body axes z_, referred to as intermediate axes,

with the origin at Oi and attached to body i - 1 so that

is along the long axis. We will also find it convenientz_
to introduce an inertial frame of reference XYZ with

the origin at O.

We denote the position vector of point O_ rela_

tive to the origin O by 1_,_ = [Xo_ Yo_ Zo,] T. Then, we

denote the position of a typical point P_ in the unde-

formed i body relative to O_ by r_ _nd the elastic dis-

placement of P_ by u_. Hence, the radius vector from

O to Pi in displaced position is simply

R_ - C_Roi + ri + t_, i= 1,2,...,N (I)

where C_ is the matrix of direction cosines of axes

z,y_z_ with respect to axes Z_-lyi-lz_-l, and note that
the vector R_ is in terms of components along the body

axes z_-ly_-lz_-i and the vectors R_, r_ and u_ are in

terms of components along the body axes z_y_z_.



We consider here bodies in the form of bars with

the long _ z_ pa_ing through O_ sad O_+1 when
the bars are undeformed. We are concerned with bars

undergoing torsion about _ z_ and bending about

axes y_ sad r_, u well M ahearing distortion in the y_

and zi direct/o-.. Thin, the vectors n sad u_ can be

written in the more explicit form

r, = [z, 0 0] T, u_(z,,t) = [0 uy,(z,,t) u,,(z,,t)] r

(2_h)
The radius vector R_ depends on the motion of the

preceding i - 1 bodies in the chain. In particular, we

can write the following recursive relation:

R_ = C_*_iRo,_-1+n-l(&-1)+ u_-1(&-1,t),

i -- 2,3,...,N (3)

where &-1 is the length of body i - i. Note that

Rol - Rol(t) issimply the radius vector from O to

the originO1 of the body axes of the firstbody in the

chain.

At thispoint,we propose to definethe rotational

motions. In the firstpl_ce,itwillprove convenient to

introducea set ofbody axes _rh¢ _attax.hedtoa typical

beam crosssectionoriginallyinthe nominal positionz_

and moving with the crosssectionas body i deforms.

In thisregard,note that _-t(_-1)r_-1(_-1)_-,(t_-1)

coincidewith z_. Then, denoting the angle oftwist

by ¢,i sad the bending rotationanglesby Cv_ and ¢,_,

we conclude that axes _r_ experience the angular

displacement

_,,_(z_,t) = [¢._i(z_,t) Cv_(zi,t) ¢,_(z,,t)] T (4)

with respect to axes z_y_z_. On various occasions

throughout this paper, we encounter skew symmetric

matrices derived from vectors. As an example, if a

typical vector r has components z, y sad #, then the
aalociated skew symmetric matrix hu the form

[o, ,]= 0 -_ (5)
z 0

Inview ofthisdefinition,the matrix ofdirectioncosines

of _ relativeto z_y_ can be shown to have the

expression

_,(_,_) = _ - _,(_,, _) (s)

in which I is the 3 x 3 identity m--trix, sad we note

that Eq. (6) follows from the assumption that the

components of _/,_ are small. Next, we a_ume that

axes z_y_z_ are obtained from axes z_F_ through the

rotations _q, where j can t_ke the values 1, or 1,2,

or 1,2,3, depending on the nature of the hinge at O_

and denote by C,(8_) the matrix of direction cosines

of z_y_ relative to z_F_, where 8_ = [_1 _ _s]T.

Then, the matrix of direction coeines of axes z,y_
relative to axes z_-ly_-i_-I is a_nply

(7)

Prom kinematics,the velocityvectorof the typical

point P_ in dkpla_d positionin terms of the rotating

body axes z_y_#_,has the expression

V_ =V, + _(n + u_) + v_

-V_ q- (_ 4- _)TN,_ +v_, i-- 1,2,...,N (8)

where V_ is the velocity vector of the origin O_, N.

is the angular velocity vector of axes z,y_zi relative to
axes XYZ and

_,(_,,t) = a_(z,,_) (9)

is the ela#ticvelocityvector relativeto z_y_z_,allin

terms of z_y_#_ components. We note that the velocity

vector of point O_ can be written in the recursive form

vo, =_v,_1(&__, t)

=_ {v°,__, + [_-_(&-l) + &-,(&-,,t)] r n,,__,
+ v___(&_1,t)}, i-- 2,3,...,N (i0)

Moreover, introducingthe notattion

n,(,_,,t)=Q,_(_,,t),_= 1,2,...,_v(11)

the angular velocityvector of the cro_-sectionalaxes

_¢i relativeto the inertialspace issimply

fl_=fL_+f/_(z_,t), i=1,2,...,N (12)

Finally,lettingwi be the angular velocity vector of

axes z_y_z_ relative to axes z_, in terms of z_yizi

components, the angular velocity vector of z_y_z_ is

given by the recursiveformula

n,_= _n___(&__,t)+ _

= _ [n,,,__ + no,,_l(&_l,t)] + _,

i = 2,3,...,N (13)

where the second equality follows from Eq. (12).

3. Standard Lagrange's Equations for Flexible

Multibody Systema

The motion of our multibody system is described

in terms of rigid-body diaplacement_ of eeta of body

axes sad el_tic di_plaz.ernenta relative to these body

axes. As & result, the equations of motion are hybrid,

in the sense that they conmst of ordinary differential

equations for the rigid-body diaplacement_ and partial

differential equations for the elastic displacements. The



equationa of motion can be derived by mesas of the
extended Hamiltion's prim:iple (Kef. 33), which can be
st_t_d in the form

"(6n+ a-W)• = o,
|

6q = O, 6ui = 6'6%= O,

i=l,2,...,N st t=tt,Z2 (14)

where
L = T- V (15)

is the La_rsa#sa, in which T k the kinetic energy sad
V k the potential energy, and 6W is the virtual work.
Moreover, q k the rigid-body dilpl_cement vector, sad
u_, _'i (i = 1,2,...,N) are the elutic displacement
vectors introduced earlier. Hence, before we can derive

equationm of motion, we must derive general expremions
for T, V and 6W.

Taking the zi-axis to coincide with the centroidal
of the undeformed beam, the kinetic energy can be

shown to consist of two part_, one due to translations
and one due to rotation0 (Ref. 25). Hence, using Eqs.
(8) sad (12), the kinetic energy can be expressed in the
form

N t_

T = y_ fo _ dz, (16)
i=l

where

_, =1-(p,v,_vi+ n,_Lin,) = _ivbv°,2
T _T

T _ + pi_liTtli 2VoiS i _'_ri+ fl,iJifl,i +

T:' T'_+ 2pivTd_ + 2fl_iSiui + 12_,J,i ..

T " '+ {br ].,¢, + 2n.i&¢,]
1 T T"

= _[;,iVo, Voi + Nrig, ifl,i

.T - . T =T

(17)

isthe kineticenergydensityofmember i,inwhich Pi

isthe mass densityand

J. - Ji+ J_ (18)

isthetotalmoment ofinertiadensitymatrix,where

Ji -'pi(ri + _/)(ri + _i) T

2 2 __Zit61i ]t61ti+ u,i --zi_vi

=ai / --ini *_+ ",=i -,,_i,,,,/
2 2

L -ziu,, -_iu,i zi +u,,iJ

(iga)

and

Ja = di,4J.,., 4i,i L,.,1 (19b)

inwhich J_.,,J_,u'and Jj.,are cro_-_ectionMm_s

momenta ofinertiaden_itiem,and notethat,bec&um the

elasticdeforrnationJarerelativelysmall,they areap-

proximatelyequal to h_i, f,i,i sad hiO, respectively.

Moreover, Si is obtained from

_i = pi(,i + _) = pi[=, _i u,,]r (20)

which is recognized _ the first moments of inertia
density vector.

Assuming that differential gravity effects &e neg-
ligibly small, the potential energy reduces to the strain
energy. As indicated e_rlier, the el_tic members un-
dergo torsion about zi sad bending about yi sad #i,
as well _ shearing distortions in the yi and zi direc-
tion_. R_ferring to Fig. 2, we conclude that the rel_-
tion_ between the bending displacement_ %i sad u,i,
the bending angular displacements, ¢_ sad ¢,i sad the
shearing distortion an$1e_ fl_i and _,i are

/ 0

u_i = ¢,i + &i, u,i = -¢y_ - _i (21_b)

where primes denote p&rtial derivative_ with respect to
zi. From mechsaic_ of n_terial_, the relation between
the twisting moment M,i sad the twi_ angle ¢,i is

simply
M,i = k,iGiI, i¢_i (22)

where k,_ is a factor depending on the shape of the cross
section and G_I,_ is the torsions/rigidity, in which Gi is
the shear modulus and I,_ is the polar are& moment of
inertia about _ zi. Moreover, the bending moments
are related to the bending rotational dieplacement_ by

M_i = Eil_i¢_i, M,i = Eihi¢°,_ (23a'b)

in which E_ is Young% modulus and I_i and I, are
• rea moments of inertia about axes parallel to Yi sad

z_, respectively, sad p_-ing through the center of the
cross-sectional area, and the shearing forces are related
to the shearing distortion angles according to

Q_i = k,iGiAi&i, Q,i = -k_GiAi1_i (24a,b)

where k_iand k,i are fsctorsdependingon the shape
ofthecrosssectionalare_,Gi istheshe_rmodulus _nd

Ai isthecsoes-sectionalarea.

The stra£nenergycan be expressedas

u t_

where, using Eqs. (21)-(24),

1 (M.,¢'i + M,,¢_, + M.i¢', + _,i_., - _,,&,)

1 [k,iG,/,i(_b:i)_ + Ei/,i(¢,i)_ + Ei/,,(O:i)a
2

+ k,iGiAi(u_i - ¢,)_+k,iGiAi(u;i + ¢_,)_] (26)



isthe potentialenergy denmty formember i.

Next, we wish to develop an expre_ion for the

virtualwork due to nonconserv_tiveactuatorforcesand

torques.Using the analogy with Eqs. (8) and (12),the

virtualwork can be writtenin the form

6w = (_T6_ + _T6e'l e=, + ..-o,--,
"= i=2

= [f_ (6Roi't'ri 6®r_+6u_)

N

+mT (ee;i + 6_bi)] dzi ) + E M;r eor
i=2

i=1

Ii ] N+L (f_6ui+miT6_i) dz, +_-_ 1V[;yeO; (27)
i----2

in which fiand m_ are distributedactuatorforcesand

torques acting over the domain i,M_i axe torque ac-

tuatorslocated at points Oi and actingon both mem-

bers i- i and i,for i = 2,3,...,N,/_R_ isthe virtual

displacement vectorof point :Pi,5®_ isthe virtualro-

tationvector of axes _ir/i(i,587 isthe virtualrotation

' '' 6R;_ isvector of axes ziyizi relativeto axes ziyiz_,

the virtualdisplacement vector of point O_ and 6®*_

isthe virtualrotation vectorof axes z_yiz_relativeto

axes XYZ, where allof these vectors axe in terms of

components along axes ziy_zi,and a_terisksindicate

quasi-coordinates(Ref. 33) and associatedforcesand

torques. Note that the term _f_r._LrS®;i was omitted

from 5R,'.on the basis that itilsecond-order in mag-

nitude.Moreover,

Lti LllF;i = fidzi, M_i = (Fif_+ mi) dzi (28a,b)

axe,respectively,resultantforcesand torques actingon

member i.

Before proceeding with the derivation of L_-

grange's equations by means of the extended Haxnil-

ion'sprinciple,Eq. (14), itis sdvilable to identifya

setofgeneralisedcoordinatelcapable of describingthe

motion of the system fully. From Eqs. (3), we con-

clude that the motion of only one of the points Oi is

independent. We choose this point as Or, so that we

retainonly Rot(t) for inclusionin the set of general-

ized coordinates.On the other hand, because O_ repre-

sent hinge points,the rigid-bodyrotationvectorsOi(t)

(i = 1,2,...,N) are allindependent. Similarly,the

nonzero components ofthe elasticdisplacement mad ro-

tationvectors, ui(zi, t) and @_(zi, t) (i = 1, 2,..., N),

respectively,are _ allindependent. Itwillprove con-

venientto introducethe rigid-bodymotion vector

q(t)= [R_t(t) e_(t) 8_(t)...e_(t)]T (29)

so that we propose to derive a vector La_ange ordi-

nary differential equation for q(t) and N pairs of vector

La_ange partial differential equations for u_ (z_, t) and

@_(zi,t) (i = 1,2, ...,N). To this end, we wish to ex-

press the La_angian in general functional form, and we

note that the La_rangian contains not only q, u_ and @_

but also time and spatial deriv,_tives of these vectors.

Moreover, we observe from Eqs. (3), (7), (10) and (13)

that the La_ranKian contains terrm involving u_(_,t),

i_,(t,,t),_bi(&,t) and _b,(/q,Z).Such terms will con-

tributeto the dynamic boundary conditionsaccompa-

nying the partialdifferentialequations foru_(zi,t)and

_bi(zi,t).In view of this,we expre_ the La_rangian in

the generalform

L =L[q, dl,ui, _, x_,_i, ¢_, _,, u_(_, t),
d,(_, t), ¢,(e,, g),_,(_,, t)] (30)

The extended Ha_tilton'sprinciple,Eq. (14), calls

for the variation of the La_rangiaa, which can be

expre_ed symbolicallyas

6L = (0_ _ (0_q
_q) _q+ _/

N . T

-,+E,:,

[o<], [o<],
r -OL ]r6_bi(#.i t)} (31)+ Lo¢_-_, t)J '

where L, = Ti - _ is the La4_rangian density for

body i. Moreover, (OLlOq) 2" represents the row ma-

trix [OL/Oqt OL/Oq_... OL/OqN_], etc., where NR is
the total number of independent rigid-body degrees of

freedom. Consistent with the generalized coordinates

used, the virtual work hu the form

"f0"6-W=Qr_q + _ (f_au, + mTa¢,) dz,
i----1

N

+_ [u,r_.,(4,t) + tr6¢,(4,t)] (32a)
i:l



where we write the generaliled force vector Q in the
form

o

ct = EFTM_ M_..-M_<]T (32b)

and note that FI i a l_aarslized force and MI ,...,MN

are generslised torques. They can all be related to the

actuatorforces and moment_, but we postpone further

discussionofthi=subject,and the derivationofspecific

formulM for Ui and 91 until later.

Introducing Eqs. (31) and (32) into Zq. (14),car-

ryingout the usual integrationsby partsand reca21ing

th,_tthe virtualdi_lacements vanish at t - it,t2, we

have

L_ a,, tau_)

where th and _bi must be such that the equations

:0, ,_o:O,
i = 1,2,...,N (35_,b)

Ou,(_, t) 6_(_, t) - o,

i= 1,2,...,N- I

aLi I 8 OD

)),o,/,,(_,t) 6_,,(_,t) = o,

(35c)

o_\__/+f'_ '_' + [a,_, a:, \0-_,) i= 1,2,...,N- _ (3_d)

_-;_-bUN(ZN, t) 0 (35e)
-_\a,_,] + _ 6_, a_, =

+ t_/ _u,+ t_,/ _- I..:,.,

N-1 OL O [ OL ] must be satisfied. Recalling that the body axes zil/iz,_({ are embedded in the body at ,i - 0, we conclude that+ .= Ou_(f_,t) @t Od_'_.,t) satisfactionof Eqs. (35) is guaranteed if

{+Ui}T$ui(_,t)+ 0_i(/d,t) ui(0,t)=0, ¢i(0,t)= 0, i= 1,2,...,N (36_,b)

-_ O_b_(_,t) +_ _xb_(/q,t) dr=0 (33) 0 [ OL ] OL OLi Iaa,_,0 0_(t,,0 = _---_,1.,__.,+c''
Then, invoking the arbitrarine_ of the virtual displace- i - 1,2,..., N - 1 (36c)
ments, we obtain the system La_ange's equations of
motion

_/ _ - _q = Q (34a) _ a_,(ti,t) O_b,(_,i) = _it=,=z ' + _''

i = 1,2,...,N- 1 (36d)

O_bN I=u=zu = 0 (36e,f)
i = 1,2,...,N; 0 < =i < _ (34b) Ou_v

Equations (34a) represent ordinary differential equa-

tions for the rigid-body motion and Eqs. (34b)

0 (O,Li_ 0 (OLi_ OL, and(34c) represent partial differential equations for the
\ O_b,) + _z_ t O_b_) - _ = m,, elutic motions. Moreover, Eqs. (36) are recognized a_the boundary condition=accompanying the partialdif-

i = 1,2,...,N; 0 < =_ < ti (34c) ferentialequation=. Although F.,qs.(34a), Eqs. (34b),



(36&), (36c) and (36e) on the one hand and Eqs. (34c),
(36b), (36d) and (36f) on the other hand have the ap-
peazanc_ of independent iets of equations, they Lre in

f_t eimult_meous. They conmtitute s hybrid (ordinary
and psrtial) set of _tial equations governing the

motion of the multibodF systmn shown in Fig. 1.

4. Lagrange's F._ltmtions for Flexible Multi-
body Systemm in Terms of Quui-Coordi-
nates

Equations(34)seem verysimple,but they_renot.

The reasonforthisisthatthekineticenergyisonlyan
implicitfunctionof q and q and not _n explicitone.

The kineticenergyisan explicitfunctionofV_ _nd

_, which atecommonly known asderivstivesofquasi-

coordinstes(Ref.33).Actually,thekineticenergyisan

explicitfunctionoffl_,but f/_isrelateddirectlyto_,

as can be seenfrom Eq. (13).As shown inRef.32 for

singleflexiblebody,hybridLasrange'sequationsof

motionin termsof quasi-coordinatesare considerably

simplerthan the standardLsgrange'sequations.We
proposetoshow inthispsperthatthesame istruefor
multibodies.

Recallingdefinition(29)oftheri$id-bodydisplace-

ment vector q(t), we can rewrite Eq. (34a) in the more
detailed form

d 0L =FI (37a)
\aRol/ - aI_--'-_

d-t - _ -M_, i= 1,2,...,N(37b)

The vectorsRol, Roz and Fi areinterms ofcompo-

nentsalongtheinertialaxesXYZ. Moreover,thecorn-

ponentsof the symbolicvector8_ representrotations

aboutnonorthogonalaxeslesdingfrom z_ tozd/_z_

•nd thecomponentsofM_ atesmocistedmoments. An

example of such rotations ate Euler's angles (Ref. 33).
As the quasi-velocity counterpart of the generalized ve-
locity vector el(t), we choose

w = [V_'ol _,_ w_..._]T (38)

a_d we note that w does not equal the time derivative
cl of the dkpl_:_xmntl. We s_o note that every
three-dimensional vector entering into w is in terms
of the corresponding orthogonal body _xes z_y_zi. The
relation between the velocity vector Vol in terms of
body axes and the velocity vector Rol in terms of

inertialaxesis simply

V.1 = C1Rol (39)

where CI isthemstrixof directioncosinesfirstintro-

ducedinSec.2,and thatbetweenthevelocityvectorw_

intermsofbody axesand theEule.rian-typevelocities
O_can be writtenas

w_=D_6_, i-l,2,...,N (40)

where D_ k a given transformation matrix (Ref. 33).
Equations (39) and (40) and their reciprocal relations
can be expremed in the compact form

w -" AT(q)(_, (_ -- B(q)w (41_b)

where

A ----block-dis_[C'_D_T D_ ... D_N] (42a)

B = block-disg[C_D_"_D_...D_ _] (42b)

Equations(37)po_tuh_e a La_ran_ian in terrns of
generalised coordinates and vdodties, Eq. (30),when
in fact the Le4_anglan defined by Eqs. (15), (16), (17),
(25) and (26) k in terms of generali_d coordinates and

quasi-velocities.To di_inguishbetweenthetwo forms,
we define

L* =L°[q,w, u_,u_,_, _,, _b_,_bo
_(_,t),_(_,t),_#,(_,0,_#,(_,t)] (43)

We propoec to obtsin Ls_an_e's equations in
terms of quasi-coordinates by transforming Eqs. (37).
To thi_ end, we use the chsin rule for derivatives with

respect to vectors and consider Eq. (39) to obtain

_(c_R_) r _n' _ _L"
Olt.1 OV._=_ OW-:_ (_a)

OL

ORo_
OL OL*

0R._ (44b)

But, itisshown in the Appendix that the matrixof

directioncosinesC_ and quui-velocityvector_ satidy
therelation

C, --_Tc, (45)

so that differentiating Eq. (44a) with respect to time,
we have

_ =_ _v.i/

OL" d ( OL"=_ _ + _ _ kOVo_;

Then, immrtins Eqs. (44b) and (46) into Eq. (37a)
•nd premultiplying by Ci, we obtain the translational
La4pange's equations in terms of quasi-coordinates

d (OL" _ . OL" _ OL" =F_ (47)



where

F_ = c_z_ (48)

isthe resultantforce&ctingon body I intern_ ofbody-

a.xescomponenta.

Aa fat u the rotation&lmotion k concerned, we

considerfu_t the equdlmm forbody i. Using the chain

rule for derivativee with reapect to vectors once again

a_d truing Eq. (40), we obtain

where

M r = D_'TM_, i = 2,3,...,N (56)

Bqu&tiona (47), (53) and (55) can be cut in a sin-

gle matrix equgion. Indeed, recalling Eqs. (29), (38),

(41b) and (42b), the rigid-body Lagrange's equ&tiona
of motion in terms of quui-coordin&tes can be written

in the compact form

OL
•--'w"- _.

aS,

aL aL* a(cIR,,) T aL* a(D1#,) T OL*

ae--T= _ + ae, av°_ + _8_ aw,

(49b)

Moreover, .Eq.(A-29) from the Appendix, with a re-

placed by Ro, yidda the relation

a(cla")r = -V_Po, (50)
08,

and Eq. (A-27) shows th,,t

bT o(o,#,)r + m_, (51)
- 08,

Hence, using Eqs. (49)-(51), we can write

d (OL*_ t}L* 0L*
+ DT_/_,a,_, ] + °'r _'°'av., as,

[. (oL' oL" _ OL'I
=oT i._._,a-_.T,) +_'o,a--e-E_+,,,,_._--T_,j - _- (521

Inserting Eq. (52_ into Eq. (37b) and premultiplying
the resultby D_ ,where the supenlcript-T denoteA

the inveme of the transposed matrix, we obta£n the

rotationalLagrange'e equations for the firstbody in

terrrmofquui-coordinates

8(D,0,) T OL* _TOL * d (OL) _L _BTOL
(9#, (gw, =/9` _ (49a) _" _w + H_- _.q - q' (57)

where the uteriek in L* w.,. dropped for convenience.

Moreover,

d (aL' . __,oL"

(5_)
where

M_ = Z)_rM, (_4)

is the resultant torque actin_ on body 1 in terms of

body-_e_ components. The equations of motion for

the remaining bodies can be obtained in the same mmn-

ner, except that Vd (i "- 2, 3,..., N) ate not indepen-

dent, ,_ can be concluded from Eqs. (10). Hence, from

Eq. (53), the remaining rotational LaA,range's equations

in tern_ of quui-coordin&t¢_, ate

d (@L*'_ OL" OL ° =Mr,

= 2,3,...,N (55)

to00_o, _ 0 ...

//=[i 0_0: 0: ""......_ (58)

and

q" - BTQ = [F_ r M_ T M; r... M_vr] T (59)

The hybrid set of equation_ of motion ia completed by

sdjoining to Eq. (57) the partial differential equations
for the elutic motiona, Eqs. (34b) and (34c), and the

a_ociaZed boundary conditiona, Eqs. (36).

5. Explicit Hybrid Equations of Motion for
Flexible Multibody Sy_tem_

Using Eqs. (16) and (17), we cam write the kinetic

energy in the form

N t_

°
iffil

1 N

+ + d,,

+.,,),.,] (,0>
and we obmrve th&t T does not depend explicitlyon

the quaai-velocitie_Vo, and w_ (i : I,2,...,N), but

on Voi and fLi (i = 1,2,...,N). To resolve this

inconvenience,we make use ofthe discrete_¢_epfunction

7_,definedby

0, ifi = -1, -2, -3, ... (61)7_: 1, ifi:O, 1,2,3,...

7



mud then m_e repe_d u_ of Bqs. (10) rand (13) to
estsbliah the rd&tionJ

N

a,, = _ _ [7,-j_j +-r,___,n,(t;, t)l (62,)
jffil

N

N

=C;IVo, + _ {r,_j + r,_+,n,(tj,t)

j--1

+7,-j-IC_j vj(tj,t)} (62b)

N

".,=E
jr1

N

./--1

+7,_j-xC'7iCj(ti,t)} + dr, (63b)

N

6e;, = _c_ [7,_,60;+ 7,_j_,6¢,(l_,tl] (83c)
j=l

N

5R;, =C*,5R;1 + E [r,jso} + r,j+ls_bj(tj,t)
j=l

+ 7,_j_,CliSui(ti,t)] (63d)

in which C*i issimply the rn_trixof directioncosines

of axes ziy_ziwith respectto axes ziyjzi,definedfor

allindic_ i, j between 1 _d N, and consequently

i

k=_+l

We _ note that C_s_ depends only on @t, for
min(i,j) < k __ max(i,j), _nd on 0t(/t,t), for v_lues

of k s&ti_ying rain(i,j) < k < m_(i,j). Hence, truing

Eqs. (A-29) and (A-30),we can derivethe rd_tion_

a(_')_ = (___ - v,__)D_q_ aC;, (S_)

provided a does not depend on St, and

a(cT,_o)_
O_(t_,t) = (7#-_-1 - 7____,)E_(t_)_aC;_ (66b)

provided a does not depend on _p,(t,,t). Some other
relstion, thst will prove useful are ,.. follows:

(67b)

(67c)

= E_(_,_)_(v_.k-_ - v,-_-l)_[v,-_,

C_:I, l<i<N (64b)

(c:,)r= q,, c7,_,= c_, _< _,_,_< _
(64c,d)

The other quantities&ppeazing explicitlyor implicitly

in Eqs. (62) and (83) are given by

u. =[t_..,(t_,t)_.,(_,t)]_
i-1

(65&)

Psi = E "__k"_ (85b)

N

d_ = _C,', [_,-_ + _,___ln.(z_,,)] (6sc)
jr1

i-1

jr1

L

(68a.)

i-1 I

+ (68b)

a-.(tk,_) = - _ _"q' (6So)

0v_ _,-_-1_1_01_,

+E

= Ek(tk,t) [-

D_r_u_



_1 }]+E, (t_,0a¢_g_,0_o _ C;. (68d)

av_ = q,, a_aVo---7 _ = r_ (6Se,f)

av T av¢_ = r T (6Smh)

Then, using the chain rule for vectors when needed, we
obtJdn the momenta

N OL_ (69_)az, =_ q, a_V_2
PVol =OVol _=1

Pc"/ -Ow/ - ['_OVoi +')'i-JC:*J O--_i/ (69b)

where

OL_ _ol'ov--==._v., + _,,n,, + p,a,_,, (_oa)

OLi _o" (b, ¢t, (70b)oaL =:,,n,, + _,v°, + +/._) d=,

For future reference, we also indicate that

d (oz,_

+ pifi4dzi + dwi (71a)

d fOL,_
\ a-h-_./ =s,,n,, + ._,_r.,

+ Jo" (_,ii_ + f,,_,)dz, + din, (71b)

where

0 L_

Ii

J_" =_o P,{_'(',/I "1"_)T.I.(z,_,X + u')uF} d,, (72c)

_d

i,vo, = ,._ Vo_+ _ (._ct, r,#
i=l j----1 i=i

j=l i=l

+ _ (-_ct, r,j+_
j=l i::i

+.,,_,_,ct,_c',)]a.,(_,.,)

i--1

N [ OLi

+,_ df_ -t- dsv,) ] (73a)

/i_1 '

+,,-,(_,w+,,-,_,_,,1_,]}_,,

"R+ E ,,_,_, (,_r_
h:l Li:l

+_,-,_ _,)_,,]*.(_,,0

+_,_,_,(_,,,._,+,,_,_,,)_,,]},.,(,,,,)

"I/o" ]
i--I

i:i i:l

._. OZ,, T (,.,r,_+ -f_-_ci__ + rodw_ + "f___C_d_ru+

+,,_,_,_,)d_,+(_T,_+,,-,_,,)d_]
(73b1

We alsodefineequivalentforc_ and moments

OL

r;, =c,y_--T=o (74a1

(74b)

and the remaining pertinent terms

oz _ ov_ OL, (75x)Ou/_,t) = au_(t/,t) ov._



aL N a_ 8_ (75b)

aL N( m#. aZ aa_ aC l_j(_,t) + a_,_,_)aT.,
(7Sc)

(on.,(t,.,) + )
(Tad)

in which some of the partial deriv&tives are given by

zq.. (87).

FinAlly, adjoining the kinen_tic relations_-

prem_[ by Eqs. (9),(11),(39) sad (40) and inserting

E<Im.(68)-(70)intoF.,qs.(34b),(34c)and (57),we obtmn

the hybrid _t_teequstionJintem_ ofquay,i-coordinates

I_,i =C_'IVol, b_=D[_, i= 1,2,...,N
(76a,b)

_(._,t) = v,(-.0, Q,,(:n,0= a.,(.. 0,
i- 1,2,...,N (76c,d)

l_Vo_= -_zpvo_ + F_ (7_)

P.l = -9,1Pvol - _IP, t + M_I + M:I (760

l_i = -_P,,i + M_i + M_i, i = 2,3,...,N (76g)

P,[_,i + V_, + ",_,, - u,,_,, - 2n,.,u., + _,,,Vo=,

+ t'_,,flz.,u.,] - [/_,G,A_(u_ - @.,)]' =/_, (76h)

OL

i= 1,2,...,N- i (77c)

OL

i- 1,2,...,N- 1 (77d)

I 0L_)OLN = O, _ = 0 (77e, 0
_v =N=tH .,,=t.,

emd the generali=ed forces And torques are given by

N

i=I

N

i=i

N

M* =M:, + E (rSr:_ + 7y_,c_M:y),
j--I

= 2,3,...,N (78c)

N

V,=ETy_i-_CTyrr*j, i:1,2,...,N-I (78d)

j=1

N

j=1

= 1,2,...,N- I (78e)

where we have made use ofEqs. (27),(32_) _nd (63c,d).

- _.,,Vo., + .,_.,n.., - (0=,., + _:,,,),,.,

+ fl_,,fl_.,_#,] - [k.,G,A,(u_, ÷ @,,)]' = f., (7fii)

f.,.,({).=, + {_..,) - (k.,G,I.,_@_,)' = rn., (76j)

/,,,,(h.,, + _,,) + _.,u,_(.:, + ¢_,)-(E,I_,¢_,)'
= nN,(76k)

j..,Ch., + t_.,) - _,G,A,(t_, - @.,)-(E,I.,@_.) '

= m. (Tek)

The modated bound_y conditions,Eqs. (36), ate

given by

u_(O,t)-'O,M,(O,t)=O, i-1,2,...,N (77a_b)

6. Sunmmry and Condus/am

In recent years, there hA,. been an increasing interest in

deriving the equations of motion for flexible multibody
systems by treeing the mm end stiffness of the bod-

ies _ di.tributed parameters. The equations of mo-

tion are geners_ly derived by mesas of the extended

Hsnfilton's principle, leading to & hybrid set of equs,-

tions, where hybrid is to be taken in the sense that

the rigid-body trs._ls_ions sad rot&tions of the bod-

ies are described by ordinary differentiM equations _-nd

the elastic motions are described by partial differential

equations with appropriate boundary conditions. In

earlier investigations, the rigid-body rotations were de-

scribed by Eulerian-type an_les, which tend to compli-

cate unduly the equations of motion, unless the motion

remaLns planar.

This paper presents s mathenutticsl formulation
for flexible multibodies in terms of quasi-coordinates,
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which permits the derivsk_on of the equations for sen-
era/ rigid-body motiom with e.mmiderably more emm

than be using Eulerian-type saglea. As an added fea,-
ture, the equstions for the elMtic motions include rot_

tory inertia and _ _ effects. The equs-
riots of mc4Jua m_f4_, in ststo form, mskins them

suitable for cmtro] ._.
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Appendix

i. Derivative rul_

If A = [A_,] k An m x n matzix,thenwe deflue the
pa:tia] derivative of A with rmpe_t to a _Mar r to be
them x n matrix @A/@r "- [@Ad_/@r]. If A is = function
of time t, then the derivative of A with respect to t k
denoted by A = 4A/0R = [dAoIOR]. Let B - [BO] be
sm M x N nmta_. Then, the d_ve of L m_;riz with

respect to L nmCriz, 8A_SB, is tim mM x nN m_,rix
definedby

8A

OBtz
OA

OA oa=---;
8B

o'.4
OB=I

&4 OA
OBx= OBt_
OA OA

o°•

OB2= OB_t

• . °

o'A o'A
oo.

OBM= OBM_

(A - 1)

Furthermore, let L be = =¢=/=z sad f = _..-/m] T,

q = [qz." "qn]T, • = [st... _]T be colunm mWice=.

Then OL/Oq is • column _ 8fr/Oq is =1, n x m
mstrix sad M/Oq _' = (@f_/@q)r. T1he chsin rulm for
diffe=entistion hsve the f_m

afr .OqTafr or or 0q
0-;- = 0- aq or _:0qrasr (A-_)

@L Oqr OL @L @L Oq (A - 3)
Os = O= Oq or 07=0q _@s T

Moreov_'_
4_ M.

t = _- = _---_q (A-4)

(A - e)@(Aq)=A or _=A _r
0q r 0q

0 (|q_Aq) =Aq (_-8)
0q

provided A doe= not depend on q.

iL Prop_ =rtboSm=l m=ui=m

Throughout thi= p_per, we encount_ pmp_ _¢thogo-
nil nmtricm C, which =ze functimm of three indepen-
dent coo_li_at_O = [OzO= 0=]'r. _ ma_e_ can
be ident;fled ... ma_Uiceeof dJrectkm eminee of one co-
ordm_e totem _;_=(=,mt_ con_x=diW; -nit
bx, b=, bs, with reqm_ to moth_ _ q_tem
:zz:_zs, with correepondin_ unit vectors nz, q, ha.
Hence, lettins C = [C#], the mtrim C# cam be ex-
premed u

cq = b,. u#, i, j = 1,=,_ (A - 10)

which implim th&t

8n# = (n#- b.)b. = _ Ct#b., j = I, 2, 3
ksl kml

(_ - 11)
At _ point we _ to mtablkh & rela_on between
the body mma component_ of the mmlpd_ velocity

of coordin_t_ =y=te.m _x_,s with rmpe¢t to coordinste

.system zx==== stud the time derivstive of C_ with
respect to coocdin=tte system zt====. FirSt, _ecai]
(Ref.33) thst e is uniquely chu_d by

l_=_xb_, i=1,2,3 (A-12)

where in this cue the "dot" requ/¢m holding nt, n=, ns
con=tHat. Then, tsJd_ the tim= derivttive of F,q. (A-
I0), u=inK Eq_. (A-If) sad (A-12), _ud some identity
involving _cal_ md vector productm, we obtain

d_ =I_ .n#= (=,x b,).=# = (b, x =#).=,

=(b, x _C=#b=) "e = C_#(b, x b=)._
kml kml

(_ - 13)
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Now we obmrve tJag _ x hi). _, where i, k = I, 2, 3, ]_llmd,ioo (A-20) ml=_= C _d D in =-, implicit totem=.

mm_t_eentziem_tbe 3 x3 matrix Next, me wish to dmi_m m, ==p_mio= kxr D.

where [_1 _ t_s]r are the _1_2_ componenW of _,
sad we h&ve used the fact that bt, b2, bs form s right.
handed set of unit vectors. Inserting Ecp. (A-14) into
Eq. (A-13),we obt.mn

3

c, = _.,,c_ (A- 15)

which can be expremed in the matrix form

= _rc (A- le)

The relationship between t¢ and @hu the form

Interehtelial i =ed j in _1. (A-22), we have

OP,_= vvtw$

Then,mbtr_S Eq.(X-_)fromEq.(A-SS),wec=
write

a_ a_, =
which imp fro that

as), aD_ = b,D_

-4"

.=o(.), ,o. ,,|We now propoee to derive mine relation betweea D I),= _-,= (_'_ "I"J_i]D_
$=1 $--1

of CC_r = I with respect to @,, _ obtsin = 8 __ D$ i- Dk D$

aCc,r 0c• / 0c t,,_"c +., =c- T' + =o,

(A- 24)

_= x,s,s (A- ,s)

fzom which we conclude that the 3 x 3 matrix

C(SC'q'/_) is Mmw symmetric. We denotethe mar
trix by

(A- 25)

Thi=formul_c_mbe mmdin turntodkmNm te =¢pz_mon

forb._, wemc=a_q.(A4D ma writ= ..

(A- 2e)=##, = _
This imp fro that

(A - 27)

A = c-_-,, _= x,2,s (A- xg)

"- "°"= _ +zfm

where _ b obttinedf_om the column matrix _ =
[S,_S= S=]m in the=m=lmsffi_r. Wenow_culm
the time derivative d G''r in tim fi:t'm

_=* which impfm that

Next, we comdder the pa_l derivative of (Ca) r
with respect to @,where a dora not d_ted on 8. Fir_,
we me.aft F._a. (A-19) ted (.4.-21) ted writo

a(ca)• rac • caCe== T_-_f=ardr(T_-?) =(Ca)'O,

= - (C.)_Z_T= (_w,f = -(_,Ca) _

(A- 2s)

(A - 29)
=c T s,#, = c_([s_ s,

(A- 2o)

C_mp,an_r4,. (x-xe), (x-xT) ted (x-xg), we =_
dude thst

-D_(C,)

(A - 30)

The companion _ormmla

o(c%f = z_ac
8@

can be derived in a _ mumm=.s = [s,s, s,] = u (_- 2x)

13

O_GI_NAL PAGE I_
oF e_)e OU_LITY



" Body i+ I

X

Z

0

01

Y

Body 1

Oi

Body i

Fig.1 -FlexibleMultibody System

5.

Yi

r/i

Xi X i
I w

// ,I /

Uzi

$i

Fig. 2 - Bending Displacements

Z/i

!
ttWi

1
' Xi

Xi

1

Usi

5-

Xi

/


